BUFFERS

- resist pH change caused by either the addition of strong acid/base OR by dilution

Made in one of two ways:

$$
\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2} \underbrace{\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-} \rightarrow \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}+\mathrm{HC} \mathrm{H}_{3} \mathrm{O}_{2}}_{\mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}}
$$

(1)Make a mixture of a weak acid and its conjugate base (as the SALT)
(2) Make a mixture of a weak NH_{3} ase and its conjugate acid (as the SALT)

For a weak acid, you would:

$$
\begin{aligned}
H A+ & H_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{A}^{-} \\
& \text {- Add HA (weak acid) } \\
& \text { - Add a salt containing } A^{-} \text {(example: } \mathrm{NaA} \text {) }
\end{aligned}
$$

- This solution actually contains an acid and a base at equilibrium, with a significant concentration of BOTH.
- The acid in the buffer can neutralize bases, while the base can neutralize acids.

$$
\begin{gathered}
\mathrm{HA}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{A}^{-} \\
k_{a}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right][\mathrm{A}]}{[\mathrm{HA}]}
\end{gathered}
$$

(1) Take log of both sides
(2) Multiply by -1
(3) Rearrange, solving for pH

$$
p H=p K_{a}+\log \left(\frac{\left[A^{-}\right]}{[H A]}\right) \left\lvert\, \begin{aligned}
& \text { Henderson- } \\
& \begin{array}{l}
\text { Hasselbalch } \\
\text { Equation }
\end{array}
\end{aligned}\right.
$$

$[A-] \ldots$ from the salt $[\mathrm{HA}] \ldots$ from the weak acid

- We ASSUME that the initial concentrations of both the acid and its conjugate are equal to the equilibrium concentrations. Valid IF there are significant amounts of both species initially.

149

$$
p H=p K_{a_{\text {,acidic }}}+\log \left(\frac{[\text { basic species }]}{[\text { acidic species }]}\right) \left\lvert\, \begin{aligned}
& \text { Henderson- } \\
& \begin{array}{l}
\text { Hasselbalch } \\
\text { Equation }
\end{array}
\end{aligned}\right.
$$

ex: acidic buffer

$$
\begin{aligned}
& \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2} / \mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2} \\
& \mathrm{pH}=\mathrm{pha}_{, ~ \mathrm{HC}}^{2} \mathrm{H}_{3} \mathrm{O}_{2}
\end{aligned}
$$

ex: basic buffer

$$
\begin{aligned}
& \mathrm{NH}_{3} / \mathrm{NH}_{4} \mathrm{NO}_{3} \\
& \quad \mathrm{PH}=\mathrm{KNa}_{1 \mathrm{NH}_{4}^{+}}+\log \left(\frac{\left[\mathrm{NH}_{3}\right]}{\left[\mathrm{NH}_{4}^{+}\right]}\right) \\
& \quad \mathrm{pHa}+\rho K_{b}=14,00 \ldots \text { is the -log of } K_{a} \times K_{b}=k_{w}
\end{aligned}
$$

${ }^{150}$ Calculate the pH of a buffer made from 30.2 grams of ammonium chloride ($\mathrm{FW}=53.492 \mathrm{~g} / \mathrm{mol}$) and 29 mL of 18.1 M ammonia diluted to $150 . \mathrm{mL}$ with water.

$$
p H=p K_{a_{\text {,acidic }}}+\log \left(\frac{[\text { basic species. }]}{[\text { acidic species }]}\right) \left\lvert\, \begin{aligned}
& \text { Henderson- } \\
& \begin{array}{l}
\text { Hasselbalch } \\
\text { Equation }
\end{array}
\end{aligned}\right.
$$

Calculate the molar concentrations of ammonium ion and ammonia.

$$
\begin{aligned}
{\left[\mathrm{NH}_{4}^{+}\right]: } & 30.2 \mathrm{~g} \mathrm{NH} \mathrm{Cl} \times \frac{\mathrm{mul}}{53.442 \mathrm{~g} \mathrm{NH}} \mathrm{Cl} \\
& \frac{0.5645704031 \mathrm{~mol} \mathrm{NHyCl}}{0.150 \mathrm{~L}}=0.5645704031 \mathrm{~mol} \mathrm{NH} C l
\end{aligned}
$$

$\left[\mathrm{NH}_{3}\right]: M_{1} V_{1}=M_{2} V_{2}(18.1 \mathrm{~m})(29 \mathrm{~mL})=M_{2}(150 . \mathrm{mL})$

$$
M_{2}=3.499333333 \mathrm{M} \mathrm{NH}_{3}
$$

pta: $K_{b, N H_{3}}=1,8 \times 10^{-5} ; p K_{a}+p K_{b}=14.00$

$$
p k b=4.74 \quad \text { pta }+4.74=14.00, p K_{a}=9.26
$$

Plug into $\mathrm{H}-\mathrm{H}$ equation:

$$
p H=9.26+\log \left(\frac{3.499333333}{3.763802687}\right)=9.23
$$

${ }^{151}$ BUFFER SELECTION

- Buffer pH is controlled by the pKa of the acidic species in the buffer.

$$
p H=p K_{a_{\text {,acidil }}}+\log \left(\frac{\text { [basic species }]}{[\text { acidic species }]}\right)
$$

- Choose a buffer system so that the desired pH is within +/- 1 pH unit of the pKa
- You also need to ensure that the components of the buffer do not interact with your chemistry!

BUFFER PREPARATION

- many buffers are prepared by mixing specific amounts of both components of the Buffer system (acid / conjugate base or base / conuugate acid)

Some buffer "recipes" call for making the conjugate ion FROM the weak acid or base ... by adding a STRONG acid or base!

$$
\mathrm{NH}_{3}+\mathrm{HNO}_{3} \longrightarrow \mathrm{NH}_{4}^{+}+\mathrm{NO}_{3}^{-}
$$

If you have more ammonia than nitric acid, you will end up with a solution containing a significant amount of both ammonia and ammonium ion ... a buffer!

BUFFER CAPACITY

- A buffer is good only as long as there is a significant concentration of both the acidic and basic species
- buffer capacity: how much acid or base can a buffer resist before losing its ability to buffer
- Buffer pH depends on the RATIO of acid to base!
 Ratio determines pH; the actual concentrations don't!
- So, if you make a buffer with 1.0M HA and 1.0M A-, it will have the same pH as a buffer with 2.0M HA and 2.0 M A- but the 2 M buffer will have a higher BUFFER CAPACITY it will resist more additions of acid or base.

Buffer calculation: Tris buffer - Tris(hydroxymethyl)-aminomethane

Calculate the pH of a buffer made from 50 mL of 0.10 M fris and 50 mL of 0.15 M fris- HCl . Assume volumes add.

$$
\begin{aligned}
& p H=p K_{\text {a, acidic }}+\log \left(\frac{\text { [basic species.] }}{\text { [acidic species] }}\right) \\
& \text { [tres]: } m_{1} v_{1}=m_{2} V_{2}(0.10 \mathrm{~m})(50 \mathrm{~mL})=M_{2}(100 \mathrm{~mL}) \\
& m_{2}=0.050 n+r i s \\
& {\left[t r i s-H^{t}\right]: M_{1} v_{1}=m_{2} v_{2}(0.15 m)(50 m L)=m_{2}(100 \mathrm{~mL})} \\
& m_{2}=0.075 m \text { this }-\mathrm{H}^{+} \\
& p H=8.06+\log \left(\frac{0.050}{0.075}\right)=7.88
\end{aligned}
$$

${ }^{154}$ Take $100 . \mathrm{mL}$ of the previous buffer (0.050 M fris $/ 0.075 \mathrm{M}$ fris- HCl), and add 5.0 mL of 0.10 M HCl . What is the pH of the mixture?

The HCl should react with basic component of the buffer (fris), and change it to its conjugate acid
... so we need to find out the NEW concentrations of each species in the system.

* Solution volume is now 105 mL (100 mL of buffer plus 5 mL of HCl)

$$
\operatorname{pHi} 8.06+\log \left(\frac{0.0428573 \mathrm{~m}}{0.0761905 \mathrm{~m}}\right)=\square .8 \begin{aligned}
& \text { The original } \mathrm{pH} \text { was } \\
& 7.88, \text { so the } \mathrm{pH} \\
& \text { dropped by } \\
& 0.07 \mathrm{pH} \text { units. }
\end{aligned}
$$

${ }^{155}$ Compare this 0.07 unit pH change with adding 5.0 mL of 0.10 M HCl to $100 . \mathrm{mL}$ of pure water.
(We're just diluting the acid...)

$$
\begin{aligned}
& m_{1} v_{1}=m_{2} v_{2} \\
& (0.10 \mathrm{~m})(5.0 \mathrm{~mL})=m_{2}(105 \mathrm{ml}) \\
& 0.0047619 \mathrm{~m}=m_{2}
\end{aligned}
$$

Since this is a strong acid, hydronium ion concentration equals nominal acid concentration:

$$
\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=0.0047619 \mathrm{M}
$$

$$
\mathrm{OH}=2.32
$$

... which is a change of 4.68 pH units from water's original pH of 7.00 !

INDICATORS

-Instead of using a pH meter to monitor acidity, we may choose to use an acid-base INDICATOR.

- Acid-base indicators are weak acids or weak bases which are highly colored.
- The color of the undissociated indicator MUST BE DIFFERENT than the color of the dissociated form!

$$
\mathrm{HA}_{\mathrm{RD}}^{\mathrm{RE}}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{A}^{\mathrm{aHE}}-
$$

The indicator must be present in very low concentrations so that the indicator's equilibrium DOES NOT CONTROL the pH of the solution!

$$
\mathrm{HA}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{A}^{-}
$$

Look at the Henderson-Hasselbalch equation - we want to know how much of the red form and how much of the blue form are present!

$$
p H=p k_{a, \text { ina }}+\log \left(\frac{\left[A^{-}\right]}{[H A]}\right)
$$

When does the color of the indicator change?
IF the pH is $\ll \mathrm{pKa}$, then the log term above must be both large AND negative!

- What color is the solution?

$$
[H A] \gg\left[A^{-}\right] \ldots \text { and the solution is RED. }
$$

If the pH is >> pKa , then the log term above must be both large AND positive!

- What color is the solution?

$$
\left.\left[A^{-}\right] \gg H A\right] \quad . . \text { and the solution is BLUE }
$$

- So, the color changes when the pH of the solution is near the aKa of the indicator, BUT we can only DETECT the change when enough of the other form is present.

