For a WEAK ACID, equilibrium does not lie far to the right. The ionization equilibrium of the acid itself is important!

For a WEAK BASE, equilibrium does not lie far to the right. The ionization equilibrium of the base itself is important!

$$
\begin{aligned}
\mathrm{BO}_{2} \mathrm{O} & \stackrel{\mathrm{BH}^{+}+\mathrm{OH}^{-}}{ } \\
\mathrm{K}_{b} & =\frac{\left[\mathrm{BH}^{+}\right]\left[\mathrm{OH}^{-}\right]}{[\mathrm{B}]}
\end{aligned}
$$

Values for Ka and Kb can often be found in data books / tables / or on the web.

In OpenStax, these constants are in Appendix H and Appendix I!

- In solutions of weak acids or bases, the UNDISSOCIATED form is present in significantly high concentration.
- The pH of a solution of weak acid will be HIGHER than the pH of a strong acid solution with the same nominal concentration!

- The pH of a solution of weak base will be LOWER than the pH of a strong base solution with the same nominal concentration!

Consider a 0.100 M solution of nitrous acid, a WEAK ACID $\left(\mathrm{HNO}_{2}\right)$

$$
\begin{array}{ll}
\mathrm{HNO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{NO}_{2}^{-} \\
\mathrm{Na}_{\mathrm{a}}=\frac{\left[\mathrm{H}_{3} \mathrm{O}+\right]\left[\mathrm{NO}_{2}^{-}\right]}{\left[\mathrm{HO}_{2}\right]}=4.6 \times 10^{-4} & \begin{array}{l}
\text { See } \\
\text { Appendix H } \\
\text { in OpenStax } \\
\text { for Ka values }
\end{array}
\end{array}
$$

What is the pH of the solution?
We will assume that all hydronium ion in solution comes from the acid (nitrous acid).
While nitrous acid is a weak acid, it's FAR stonger than water itself! Set up an equilibrium chart.

Species	[7nitial]	Δ	[Equilibrium]
$\mathrm{H}_{30}{ }^{+}$	0	$+X$	x
NO_{2}^{-}	0	$+X$	x
HNO_{2}	0.100	$-x$	$0.100-x$

Let "x" equal the change in hydronium ion concentration.

Now, plug in to the equilibrium expression (Ka):

$$
\begin{aligned}
\frac{(x)(x)}{(0,100-x)} & =4.6 \times 10^{-4} \\
\frac{x^{2}}{0.100-x} & =4.6 \times 10^{-4}
\end{aligned}
$$

123

$$
\begin{aligned}
& \frac{x^{2}}{0.100-x}=4.6 \times 10^{-4} \\
& \|^{2} \\
& x \ll 0.100-x \sim 0.100 \\
& \frac{x^{2}}{0.100}=4.6 \times 10^{-4} \\
& x^{2}=4.6 \times 10^{-5} \\
& x=0.00678233 \\
& {\left[H_{30}+\right] }=0.00678233 \mathrm{~m} \\
& p H=2.1]
\end{aligned}
$$

This is a quadratic, We can solve it with the quadratic equation:

$$
\begin{aligned}
& a x^{2}+b x+c=0 \\
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
\end{aligned}
$$

WHEN can we know that " x " is small enough to ignore in the subtraction:

1) Acid/base equilibria, a few solubility calculations
2) "x" is defined as representing products.
3) The Ka or Kb is 1000 times (or more ... more is better!) SMALLER than the initial concentration of acid or base!

Using this simplifying assumption, solving for "x" became really easy. But would we get the same thing using the quadratic equation?

Calculating the pH using the quadratic equation to solve for "x" gave a pH of 2.18, a difference of 1 in the last significant figure and below the margin of error for a typical routine pH measurement.

Compare:

- Weak acid HNO_{2} : pH of 0.10 M solution $=2.17$

Let's compare the pH of the weak nitrous acid with the pH of a strong acid like nitric acid:

$$
0.10 \mathrm{mHNO}_{3} \text {, what is } \mathrm{pH}_{1} \text { ? }
$$

$$
\begin{aligned}
\mathrm{HNO}_{3}+\mathrm{H}_{2} \mathrm{O} & \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{NO}_{3} \\
{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] } & =\left[\mathrm{HNO}_{3}\right]_{\text {nominal }}=0.10 \mathrm{~m} \\
\mathrm{PH} & =1.00
\end{aligned}
$$

The stronger the acid:

- the lower the pH of a solution of given concentration will be
- the higher the concentration of hydronium ion (when compared to the nominal acid concentration)
${ }^{125}$ Consider an 0.100 M solution of the weak base ammonia:

$$
\begin{aligned}
& \mathrm{NH}_{3} j \mathrm{~K}_{b}=1.8 \times 1 \mathrm{O}^{-5} \\
& \mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NH}_{4}^{+}+\mathrm{OH} \\
& \mathrm{~Kb}=\frac{\left[\mathrm{NH}_{4}^{+}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{NH}_{3}\right]}
\end{aligned}
$$

See Appendix I in OpenStax for Kb values

What is the pH ?
Set up an equilibrium chart to reduce the number of variables in the Kb expression!

Species	[Initial]	D	$\left[G_{4}\right.$-ilibrivm]
OH^{-}	0	$+x$	x
NH_{4}^{+}	0	$+x$	x
NH_{3}	0.100	$-x$	$0.100-x$

Let "x" equal the change in hydroxide ion concentration.

$$
\begin{aligned}
K b=\frac{\left[\mathrm{NH}_{4}+\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{NH}_{3}\right]}=\frac{(x)(x)}{(0.100-x)} & =1.8 \times 10^{-5} \\
\frac{x^{2}}{0.100-x} & =1.8 \times 10^{-5}
\end{aligned}
$$

126

$$
\begin{aligned}
& \frac{x^{2}}{0.100-x}=1.8 \times 10^{-5} \\
& \text { Assume } x<C O, 100 \text {, } \\
& \text { So } 0.100-x \approx 0.100 \\
& \frac{x^{2}}{0.100}=1.8 \times 10^{-5} \\
& x^{2}=1.8 \times 10^{-6} \\
& x=0.0013416408=\left[\mathrm{OH}^{-}\right] \\
& \text {So, } \mathrm{POH}=-\log _{10}(0.0013416408)=2.87 \quad \mathrm{POH}=-\log _{10}[0 \mathrm{H}] \\
& \mathrm{PH}+\mathrm{POH}=14,00 \\
& p r=14-2.87=11.13
\end{aligned}
$$

If we solve the problem using the quadratic equation to determine "x", we'll get a pH of 11.13, no different than the answer from the simplification.

Compare pH to the pH of an 0.100 M solution of the strong base NaOH : $\mathrm{pH}_{\mathrm{INH}_{3}}=11.13$

$$
\begin{aligned}
& \mathrm{NaOH}_{a} \rightarrow \mathrm{Na}^{+}+\mathrm{OH}^{-} \\
& {\left[\mathrm{OH}^{-}\right] }=[\mathrm{NaOH}]_{\text {nominal }}=0.100 \mathrm{M} \\
& \mathrm{POH}=1.00 \\
& \mathrm{PH}=13.00
\end{aligned}
$$

The stronger the base:

- the higher the pH will be for a solution of given concentration
- the higher the HYDROXIDE concentration (compared to the nominal base concentration)

