
ELECTRON CONFIGURATION (SHORT FORM)

- We can represent the electron configuration without drawing a diagram or writing down pages of quantum numbers every time. We write the "electron configuration".

$$T_{i}: \frac{1}{4} = \frac{1}{2} \frac{1}{5} \frac{1}{2} \frac{1}{6} \frac{1}{3} \frac{1}{5} \frac{1}{6} \frac{1}{3} \frac{1}{6} \frac{1}{3} \frac{1}{6} \frac{1}{3} \frac{1}{6} \frac{1}{3} \frac{1}{6} \frac{1}{3} \frac{1}{6} \frac{1}{3} \frac{1}{6} \frac{1}{5} \frac{1$$

"s" block: last electron in these atoms is in an "s" orbital! "p" block: last electron in these atoms is in a "p" orbital! "d" block: last electron in these atoms is in a "d" orbital - To write an electron configuration using the periodic table, start at hydrogen, and count up the electrons until you reach your element!

Example: Phosphorus (P): $15^225^22p^635^2p^3$

Noble gas core notation for P: $[Ne_33s_3e_3]$

EXAMPLES:

Remember - valence electrons are ALL of the electrons in the outermost SHELL (n)! More that one subshell (I) may be included in the valence electrons

 $CI | s^{2} 2s^{2} 2p^{6} 3s^{2} 3p^{5}$

[Ne] 2,23,5

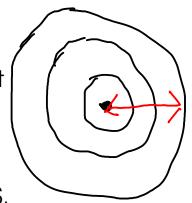
 $F \left| s^{2} 2 s^{2} 2 \rho^{S} \right|$

TITANIUM is a transition metal that commonly forms either +2 or +4 cations. The 4s electrons are lost when the +2 ion forms, while the 4s AND 3d electrons are lost to form the +4!

You can order the subshells in numeric order OR

Ti
$$|s^{2}2s^{2}2\rho^{6}3s^{2}3\rho^{6}3d^{2}4s^{2}$$
 or $|s^{2}2s^{2}2\rho^{6}3s^{2}3\rho^{6}4s^{2}d^{2}$
or $(Ar)3d^{2}4s^{2}$ or $(Ar)4s^{2}3d^{2}$
Se $|s^{2}2s^{2}2\rho^{6}3s^{2}3\rho^{6}3a^{10}4s^{2}4\rho^{4}$
or $[Ar]3d^{10}4s^{2}4\rho^{4}$
Noble gas core notation. Use the previous noble gas on the table,
then add the electrons that it doesn't have to the end.

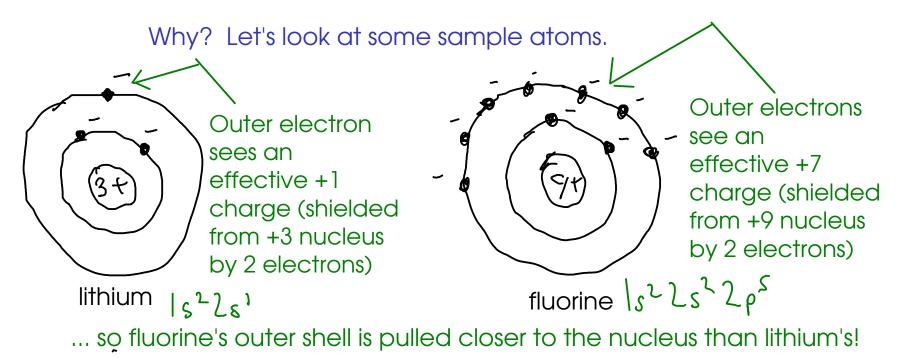
Sample f-block element


PERIODIC TRENDS

ATOMIC RADIUS

153

- The distance between the nucleus of the atoms and the outermost shell of the electron cloud.

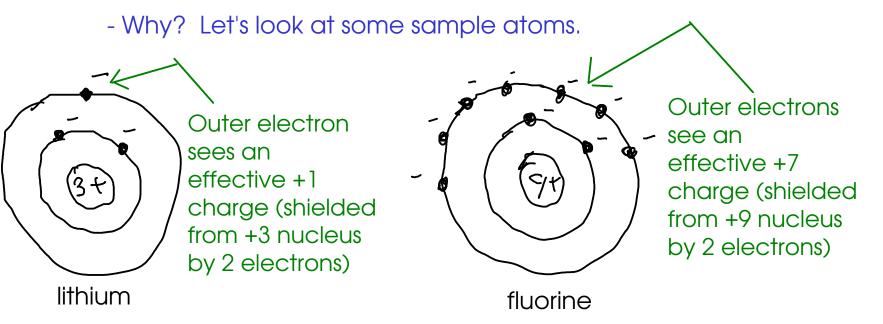

- Relates to the size of the atom.

- As you go DOWN A GROUP (), the atomic radius INCREASES.

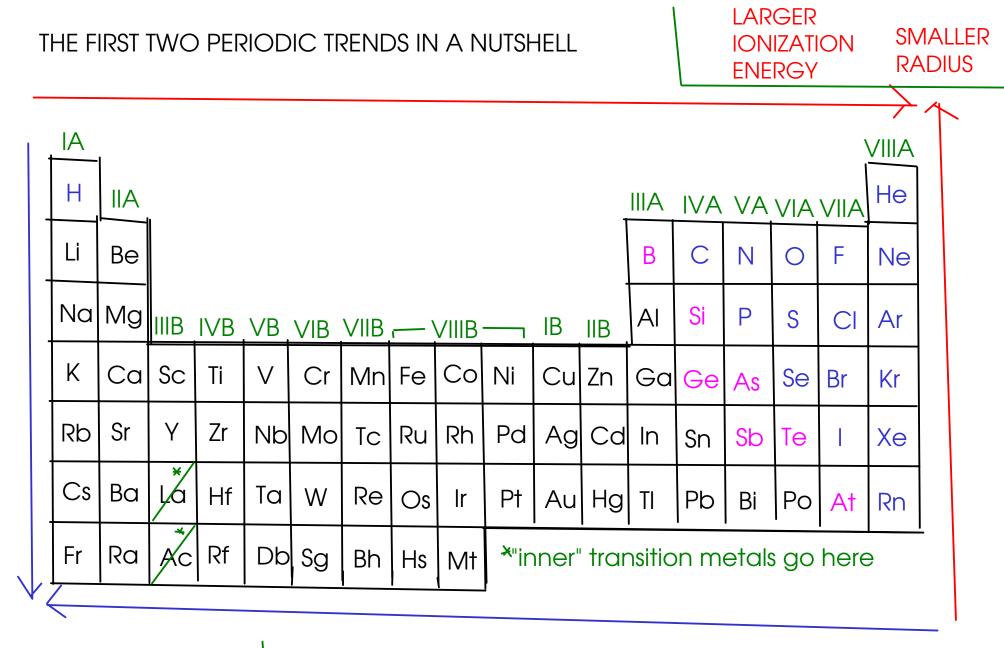
- Why? As you go down a group, you are ADDING SHELLS!

- As you go ACROSS A PERIOD (\longrightarrow), the atomic radius DECREASES

(FIRST) IONIZATION ENERGY


- The amount of energy required to remove a single electron from the outer shell of an atom.

- Relates to reactivity for metals. The easier it is to remove an electron, the more reactive the metal.


- As you go DOWN A GROUP ($\sqrt{}$), the ionization energy DECREASES.

- Why? As you go down a group, you are ADDING SHELLS. Since the outer electrons are farther from the nucleus and charge attraction lessens with distance, this makes electrons easier to remove as the atoms get bigger!

- As you go ACROSS A PERIOD (\longrightarrow , the ionization energy INCREASES.

... since fluorine's outer electrons are held on by a larger effective charge, they are more difficult to remove than lithium's.

LARGER SMALLER RADIUS IONIZATION ENERGY

ELECTRON AFFINITY

- the electron affinity is the ENERGY CHANGE on adding a single electron to an atom.

- Atoms with a positive electron affinity cannot form anions.

- The more negative the electron affinity, the more stable the anion formed!

- General trend: As you move to the right on the periodic table, the electron affinity becomes more negative.

EXCEPTIONS

- Group IIA does not form anions (positive electron affinity)!

 h^2 valence electrons for Group IIA! -period number - To add an electron, the atom must put it into a higher-energy (p) subshell. - Group VA: can form anions, but has a more POSITIVE electron affinity than IVA $NS^{2}Np^{3}$ - valence electrons for Group VA! Half-full "p" subshell! To add an electron, must start pairing! - Group VIIIA (noble gases) does not form anions ns²np⁶ full "s" and "p" subshells!