An 8.00 L reaction vessel at 3900C is charged with 0.850 mol of nitrogen and oxygen gases. Find the concentration of NO at equilibrium.

$$N_2(g) + O_2(g) = 2NO(g) Kc = 0.0123$$

$$K_c = \frac{[NO]^2}{[N_2][o_2]} = 0.0123$$

We'll start by making a chart to relate these concentrations to each other.

Species	[Initial]	\triangle	[Equilibrium]
N ₂	0.850mol = 0.10625	-X	0.10625-X
02	0,850 mol = 0,10625	- X	0.10625 -X
NO	0	+2x	2x

Let "x" equal the change in nitrogen gas concentration

Plug back into the equilibrium expression:

$$\frac{(2x)^2}{(0.10675-x)(0.10625-x)} = 0.0123$$

$$\frac{(2x)^2}{(0.10675-x)(0.10675-x)} = 0.0123$$

$$\frac{(2x)^2}{(0.10675-x)^2} = 0.0123$$

We could solve this problem by using the quadratic equation, but there might be a simpler way we can do it. Notice that the entire left hand side of the equation is a squared term.

$$\sqrt{\frac{(2x)^2}{(0.10675-x)^2}} = \sqrt{0.0123}$$

$$\frac{2x}{0.10625-x} = 0.1109053651$$

$$2x = 0.1109053651(0.10675-x)$$

$$2x = 0.011763695 - 0.1109053651x$$

$$2.1109053651x = 0.011783695$$

$$x = 0.0055822943$$

$$(NO) = 2x = 0.01112 M NO$$

[Equilibrium]
0.10625-X
0.10625 -X
2x