96 An 8.00 L reaction vessel at 3900 C is charged with 0.850 mol of nitrogen and oxygen gases. Find the concentration of NO at equilibrium.

$$
\begin{aligned}
& N_{2}(g)+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 21 \\
& c=\frac{\left[\mathrm{NO}^{2}\right.}{\left[\mathrm{N}_{2}\right]\left[\mathrm{O}_{2}\right]}=0.0123
\end{aligned}
$$

Weill start by making a chart to relate these concentrations to each other.

Species	$\left[I_{\text {initial }}\right]$	Δ	$\left[E_{\text {quilibriom }}\right]$
N_{2}	$\frac{0.850 \mathrm{~mol}}{8.00 \mathrm{~L}}=0.10625$	$-X$	$0.10625-x$
O_{2}	$\frac{0.850 \mathrm{~mol}}{8.00 \mathrm{~L}}=0.10625$	$-X$	$0.10625-x$
$N O$	O	$+2 x$	$2 x$

Let "x" equal the change in nitrogen gas concentration

Plug back into the equilibrium expression:

$$
\frac{(2 x)^{2}}{(0.10625-x)(0.10625-x)}=0.0123
$$

97

$$
\begin{aligned}
& \frac{(2 x)^{2}}{(0.10625-x)(0.10625-x)}=0 \\
& \frac{(2 x)^{2}}{(0.10625-x)^{2}}=0.0123 \\
& \sqrt{\frac{(2 x)^{2}}{(0.10625-x)^{2}}}=\sqrt{0.0123}
\end{aligned}
$$

We could solve this problem by using the quadratic equation, but there might be a simpler way we can do it. Notice that the entire left hand side of the equation is a squared term.

$$
\begin{aligned}
\frac{2 x}{0.10625-x} & =0.1109053651 \\
2 x & =0.1109053651(0.10625-x) \\
2 x & =0.011783695-0.1109053651 x \\
2.1109053651 x & =0.011783695 \\
x & =0.0055822943 \\
\text { [NO] } & =2 x=0.01112 \mathrm{mNo}
\end{aligned}
$$

Species	[Equilibrium]
N_{2}	$0.10625-x$
On	$0.10625-x$
NO	$2 x$

