EQUILIBRIUM CALCULATIONS

- We're often interested in figuring out what happens at equilibrium BEFORE we do an experiment!

- What's the problem? Initially, we know only ... INITIAL concentrations. Since these are NOT equilibrium concentrations, we cannot simply plug them into an equilbrium expression and solve. $\Delta + \beta \rightleftharpoons \zeta + 0$

$$K_{L} = \frac{[L][D]}{[A][B]} \dots a^{+} equilibrium$$

So how do we find out what the concentrations are at equilibrium if we initially know NONE of them?

- To solve an equilibrium problem, write out the equilibrium constant expression. Then, try to RELATE ALL THE EQUILIBRIUM CONCENTRATIONS TO ONE ANOTHER using the chemical equation.

⁻ It helps to assign a variable based on one of the substances in the reaction, then write the concentrations of the other substances based on that variable. How to do this? Take a look at the following examples...

EXAMPLE: Calculate the moles of CI- ion in a solution where solid AgCI has been mixed with distilled wate and allowed to come to equilibrium.

$$Ag([(s)] \stackrel{(}{=} Ag^{+}(n_{4}) + C[^{-}(n_{4})]; K_{c} = 1.8 \times 10^{-10}$$

$$K_{c} = [Ag^{+}][C[^{-}] = 1.8 \times 10^{-10}$$

 $Ag^{\dagger}c^{\dagger}$ (Ag^{\dagger})

We need to relate the silver and chloride concentrations in order to solve the problem!

Species	[Initial]		[[fyuilibrivm]	Le
Agt	0	$+\chi$	0+X = X	Ch sil [®]
C)-	0	$+ \chi$	0+x = X	C

Let "x" equal the change in silver ion concentration

$$\begin{bmatrix} A_{q}^{+} \end{bmatrix} \begin{bmatrix} c_{1-} \end{bmatrix} = 1.8 \times 10^{-10}$$

$$(\chi) (\chi) = 1.8 \times 10^{-10}$$

$$\chi^{2} = 1.8 \times 10^{-10}$$

$$\chi = 1.3 \times 10^{-5} = [A_{q}^{+}] = [c_{1-}]$$

$$[c_{1-}] = 1.3 \times 10^{-5} M c_{1-}$$

$$P(I_3(g) + (I_2(g) \rightleftharpoons P(I_s(g) K_c = 49)$$

If you add 0.400 moles of each reactant to a 4.00 L reaction vessel, what is the concentration of each species in the equilibrium mixture?

Kc =

$$\frac{\left[P\left(I_{s}\right]\right]}{\left[P\left(I_{3}\right]\left[\left(I_{2}\right]\right]} = 49$$

We need to relate these concentrations to a single variable. Use an equilibrium chart!

Initial conditions

Species	[Initial]	5	[Equilibrium]	Lex "x" equal the		
PCIS	0	+X	0+x = X	change in phosphorus pentachloride concentration		
Р (1 ₃	0.400 mol 4.00L = 0.100	$-\chi$	0.100~X			
$C _{2}$	<u>0.400ma)</u> - 0. 100 21,00L - 0. 100	$-\chi$	0.100 -7			
	$\frac{[PC _{S}]}{[PC _{3}][C _{2}]} = 49$	$\frac{PC _{S}}{PC _{3}} = 49 j \qquad \frac{(\chi)}{(0.100 - \chi)(0.100 - \chi)} = 49$				
Now, we need to solve for "x"						

93

$$\frac{(\chi)}{(0.100 - \chi)(0.100 - \chi)} = 49$$

$$\int (a - b)^{2} = a^{2} - 2ab \pm b^{2}$$

$$\frac{\chi}{(0.0100 - 0.200 + + \chi^{2})} = 49$$

$$\chi = 49(0.0100 - 0.200 + + \chi^{2})$$

$$\chi = 0.49 - 9.8 + 49 \chi^{2}$$

$$O = 0.49 - 9.8 + 49 \chi^{2}$$

$$V = \frac{10.8 \pm \sqrt{(-10.8)^{2} - 4(49)(0.49)}}{2(49)} = \frac{10.8 \pm \sqrt{20.6}}{98}$$

X= 0.157 OR X= 0.0639

A quadratic equation has two solutions, BUT only one of them is correct chemically.

HOW DO WE CHOOSE?

[Equilibrium] Species [Initial] \mathcal{D} P()5 +X O+X= X 1,400 mol 0,100 0.100-X - X P(12 4006 0,400ma) 0, 00 0.100 -7 X $C|_{2}$ 21,00L X= 0.157 OR X= 0.0639

This solution would give NEGATIVE concentrations of both phosphorus trichloride and chlorine gas, which is physically impossible! Use the other solution (0.0639) instead.

$$\begin{bmatrix} P(I_{S}] = X = 0.0639 \text{ m } P(I_{S}) \\ P(I_{S}] = 0.100 - X = 0.0361 \text{ m } P(I_{3}) \\ P(I_{2}] = 0.100 - X = 0.0361 \text{ m } CI_{2}$$

The equilibrium constant is 49, which is significantly larger than 1. That means the amount of product should be large compared to the amount of reactant left over at equilibrium.