CHEMICAL CALCULATIONS - RELATING MASS AND ATOMS

- While chemical equations are written in terms of ATOMS and MOLECULES, that's NOT how we often measure substances in lab!
- measurements are usually MASS (and sometimes VOLUME), NOT number of atoms or molecules!

- Chemical reactions proceed on an ATOMIC basis, NOT a mass basis!
- To calculate with chemical reactions (i.e. use chemical equations), we need everything in terms of ATOMS ... which means MOLES of atoms

2 Al (s) +3 Br₂(1)
$$\rightarrow$$
 2 Al Br₃(s)

coefficients are in terms of atoms and molecules!

2 atoms Al = 3 molecules Br₂ = 2 formula units Al Br₃

2 mol Al = 3 mol Br₂ = 2 mol Al Br₃

- To do chemical calculations, we need to:
 - Relate the amount of substance we know (mass or volume) to a number of moles
 - Relate the moles of one substance to the moles of another using the equation
 - Convert the moles of the new substance to mass or volume as desired

$$2A(ls) + 3Br_2(l) \longrightarrow 2A(Br_3(s))$$

- * Given that we have 25.0 g of liquid bromine, how many grams of aluminum would we need to react away all of the bromine?
 - Convert grams of bromine to moles: Need formula weight Br_2 : $\frac{2 \times 79.96}{159.80}$ $\frac{159.80}{159.80}$ 25.0 g $8r_2 \times \frac{m_0 | Br_2}{159.80} = 0.1564455569 \text{ mol Br}_2$
 - Use the chemical equation to relate moles of bromine to moles of aluminum $2 \text{ mol } A = 3 \text{ mol } BC_2$ $0.1564455569 \text{ mol } BC_2 \times \frac{2 \text{ mol } A}{3 \text{ mol } BC_2} = 0.104297038 \text{ mol } A = 0.104297038 \text{ mol } A$
 - Convert moles aluminum to mass: Need formula weight A1126.78 26.98 A1= Mu1= A1

You can combine all three steps on one line if you like!

Things we can do:

If we have	and we need	Use
MASS	MOLES	FORMULA WEIGHT
SOLUTION VOLUME	MOLES	MOLAR CONCETRATION (MOLARITY)
MOLES OF A	MOLES OF B	BALANCED CHEMICAL EQUATION

How many milliliters of 6.00M hydrochloric acid is needed to completely react with 25.0 g of sodium carbonate?

- 1 Convert 25.0 g of sodium carbonate to moles. Use FORMULA WEIGHT.
- 2 Convert moles sodium carbonate to moles HCI. Use CHEMICAL EQUATION
- 3 Convert moles HCI to volume. Use MOLARITY (6.00M HCI)

2 mol HC = mol Naz (03

113 Example:

How many milliliters of 6.00M hydrochloric acid is needed to completely react with 25.0 g of sodium carbonate?

- 1 Convert 25.0 g of sodium carbonate to moles. Use FORMULA WEIGHT.
- 2 Convert moles sodium carbonate to moles HCI. Use CHEMICAL EQUATION
- 3 Convert moles HCI to volume. Use MOLARITY (6.00M HCI)
- (3) 6.00 mul HC| = L

We need to convert our final answer from liters to milliliters (specified in problem statement) $m L = 10^{-3} L$