CHEMICAL CALCULATIONS - RELATING MASS AND ATOMS

Chemical equations are written
and balanced in terms of ATOMS and MOLECULES

- While chemical equations are written in terms of ATOMS and MOLECULES, that's NOT how we often measure substances in lab!
- measurements are usually MASS (and sometimes VOLUME), NOT number of atoms or molecules!

CHEMICAL CALCULATIONS CONTINUED: REACTIONS

- Chemical reactions proceed on an ATOMIC basis, NOT a mass basis!
- To calculate with chemical reactions (ie. use chemical equations), we need everything in terms of ATOMS ... which means MOLES of atoms

$$
2 A\left|(s)+3 B r_{2}(l) \longrightarrow 2 A\right| B r_{3}(s)
$$

coefficients are in terms of atoms and molecules!

$$
\frac{2 \text { atoms } A \mid=3 \text { molecules } B r_{2}=2 \text { formula units } A \mid B_{r_{3}}}{2 \text { mol } A \mid=3 \text { mol } B r_{2}=2 \text { mol } A \mid B r_{3}}
$$

- To do chemical calculations, we need to:
- Relate the amount of substance we know (mass or volume) to a number of moles
- Relate the moles of one substance to the moles of another using the equation
- Convert the moles of the new substance to mass or volume as desired

$$
2 \mathrm{~A}\left|(\mathrm{~s})+3 \mathrm{Br}_{2}(l) \longrightarrow 2 \mathrm{~A}\right| B r_{3}(s)
$$

* Given that we have 25.0 g of liquid bromine, how many grams of aluminum would we need to react away all of the bromine?
(1) Convert grams of bromine to moles: Need formula weight $\begin{aligned} & B r_{2} \\ 159.80 & =\frac{2 \times 79.90}{159.80}\end{aligned}$

$$
25.0 \mathrm{gBr} \times \frac{\mathrm{mol}_{2} B r_{2}}{159.80 \mathrm{~g} \mathrm{Br}_{2}}=0.1564455569 \mathrm{~mol} \mathrm{Br}_{2}
$$

(2) Use the chemical equation to relate moles of bromine to moles of aluminum $2 \mathrm{~mol} \mathrm{Al}=3 \mathrm{~mol} \mathrm{Br}_{2}$

$$
0.1564455569 \mathrm{~mol} \mathrm{Br}_{2} \times \frac{2 \mathrm{~mol} \mathrm{Al}}{3 \mathrm{~m}_{\mathrm{o}} \mid B r_{2}}=0.104297038 \mathrm{~mol} \mathrm{Al}
$$

(3) Convert moles aluminum to mass: Need formula weight $\mathrm{Al}: 26.98$ $26.98 \mathrm{~g} \mathrm{Al}=\mathrm{mul} \mathrm{Al}$

$$
0.104297038 \mathrm{~mol} \mathrm{~A} \left\lvert\, \times \frac{26.98 \mathrm{~g} \mathrm{Al}}{\mathrm{~mol} \mathrm{Al}}=2.81 \mathrm{~g} \mathrm{Al}\right.
$$

You can combine all three steps on one line if you like!

$$
\begin{aligned}
& \text { (1) } 154.80 \mathrm{~g} \mathrm{Br}_{2}=\mathrm{mol} \mathrm{Br}_{2} \text { (2) } 2 \mathrm{~mol} A 1=3 \mathrm{~mol} \mathrm{Br}_{2} \text { (3) } 26.98 \mathrm{gAl}=\mathrm{mol} A 1 \\
& 25.0 \mathrm{gBr} \times \frac{\mathrm{mol} \mathrm{Br}_{2}}{159.80 \mathrm{gr}_{2}} \times \frac{2 \mathrm{~mol} \mathrm{Al}}{3 \mathrm{~mol} \mathrm{Br}} \times \frac{26.98 \mathrm{gAl}}{\mathrm{~mol} \mathrm{Al}}=2.81 \mathrm{~g} \mathrm{Al}
\end{aligned}
$$

Things we can do:

If we have \ldots	\ldots and we need \ldots	Use \ldots
MASS	MOLES	FORMULA WEIGHT
SOLUTION	MOLES	MOLAR VOLUME
CONCETRATION		
MOLES OF A		MOLARITY)
	MOLES OF B	BALANCED

112 Example:
How many milliliters of 6.00 M hydrochloric acid is needed to completely react with 25.0 g of sodium carbonate?

$$
2 \mathrm{HCl}(\mathrm{aq})+\mathrm{Na}_{2} \mathrm{CO}_{3}(s) \longrightarrow \mathrm{H}_{2} \mathrm{O}(l)+\left(\mathrm{O}_{2}(\mathrm{~g})+2 \mathrm{NuCl}(\mathrm{aq})\right.
$$

1 - Convert 25.0 g of sodium carbonate to moles. Use FORMULA WEIGHT.
2 - Convert moles sodium carbonate to moles HCl . Use CHEMICAL EQUATION
3 - Convert moles HCl to volume. Use MOLARITY (6.00 M HCl)
(1)

$$
\begin{aligned}
& \mathrm{Na}_{2} \mathrm{CO}_{3}: \mathrm{Na}-2 \times 22.99 \\
& C-1 \times 12.01 \\
& 0-\frac{3 \times 16.00}{105.99 \mathrm{~g} \mathrm{Na}_{2} \mathrm{CO}_{3}=\operatorname{mol~Na}} \mathrm{CO}_{3} \\
& 25.0 \mathrm{~g} \mathrm{Nan}_{n_{2}} \mathrm{CO}_{3} \times \frac{\mathrm{mol} \mathrm{Nan} \mathrm{CO}_{3}}{105.99 \mathrm{gNa}_{2} \mathrm{CO}_{3}}=0.2358713086 \mathrm{~mol} \mathrm{Na}_{2} \mathrm{CO}_{3}
\end{aligned}
$$

(2) $2 \mathrm{~mol} \mathrm{HCl}=\mathrm{mol} \mathrm{Nan}_{2} \mathrm{CO}_{3}$

$$
0.2358713086 \mathrm{~mol} \mathrm{Na}_{2} \mathrm{CO}_{3} \times \frac{2 \mathrm{~mol} \mathrm{rlCl}}{\mathrm{~mol} \mathrm{Na}_{2} \mathrm{CO}_{3}}=0.4717426172 \mathrm{~mol} \mathrm{HCl}
$$

${ }_{113}$ Example:
How many milliliters of 6.00 M hydrochloric acid is needed to completely react with 25.0 g of sodium carbonate?

$$
2 \mathrm{HCl}(\mathrm{aq})+\mathrm{Na}_{2} \mathrm{CO}_{3}(5) \longrightarrow \mathrm{H}_{2} \mathrm{O}(l)+\left(\mathrm{O}_{2}(y)+2 \mathrm{NaCl}_{4}(\mathrm{aq})\right.
$$

1 - Convert 25.0 g of sodium carbonate to moles. Use FORMULA WEIGHT.
2 - Convert moles sodium carbonate to moles MCI. Use CHEMICAL EQUATION
3 - Convert moles HCl to volume. Use MOLARITY (6.00 M HCl)
(3) $6.00 \mathrm{mul} \mathrm{HCl}=L$

$$
0.4717426172 \mathrm{~mol} \mathrm{HCl} \times \frac{\mathrm{L}}{6,00 \mathrm{mul} \mathrm{HCl}}=0.0786 \mathrm{~L} \mathrm{of} 6,00 \mathrm{~m} \mathrm{HCl}
$$

We need to convert our final answer from liters to milliliters (specified in problem statement)

$$
\begin{aligned}
& \mathrm{mL}=10^{-3 \mathrm{~L}} \\
& 0.0786 \mathrm{~L} \times \frac{\mathrm{mL}}{10^{-3} \mathrm{~L}}=78.6 \mathrm{~mL} \text { of } 6.00 \mathrm{M} \mathrm{HCl}
\end{aligned}
$$

