Example: 25.0 g of WATER contain how many MOLES of water molecules?

$$
\begin{aligned}
H_{2} O: \quad H: 2 \times 1.008 & =2.016 \\
O: 1 \times 16.00 & =\frac{16.00}{18.0161}
\end{aligned}
$$

$$
18.016 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}=m_{0} 1 \mathrm{H}_{2} \mathrm{O} \quad \text { FORMULA WEIGHT is the mass of one mole }
$$

of either an element OR a compound.

$$
2 \mathrm{~S}, \mathrm{O} \mathrm{~g}_{2} \mathrm{O} \times \frac{\mathrm{mol} \mathrm{H}}{2 \mathrm{O}} 18.016 \mathrm{gH} 2 \mathrm{O}=1.38 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}
$$

Formula weight goes by several names:

- For atoms, it's the same thing as ATOMIC WEIGHT
- For molecules, it's called MOLECULAR WEIGHT
- Also called "MOLAR MASS"

83 Example: How many grams of barium chloride do we need to weigh out to get 3.65 moles of barium chloride?

Barium chloride is IONIC (Ba is a metal):

$$
\begin{array}{ll}
\mathrm{Ba}^{2+} \mathrm{C1}^{-} \\
\mathrm{Cl}^{-}
\end{array}
$$

Calculate formula weight:

$$
\begin{aligned}
& \mathrm{Bu}: 1 \times 137.3=137.3 \\
& \mathrm{Cl}: 2 \times 35.4 \mathrm{~S}=\frac{70.90}{208.2 \mathrm{~g} \mathrm{BuCl}}=\mathrm{mol} \mathrm{BuCl}_{2}
\end{aligned}
$$

(3) Find grams barium chloride

$$
\begin{aligned}
3.65_{\text {mol } \mathrm{BuCl}_{2} \times \frac{208.2 \mathrm{~g} \mathrm{BaCl}}{\mathrm{~mol} \mathrm{BuCl}}} & =759.93 \mathrm{~g} \mathrm{BuCl} \\
& =76 \overline{0} \mathrm{~g} \mathrm{BuCl}
\end{aligned}
$$

PERCENTAGE COMPOSITION

- sometimes called "percent composition" or "percent composition by mass"
- the percentage of each element in a compound, expressed in terms of mass

Example: Find the percentage composition of barium chloride.

$$
\begin{aligned}
\mathrm{BaCl}_{2}: & \mathrm{Ba}: 1 \times 137.3= \\
& =\frac{137.3}{} \frac{\mathrm{Cl}: 2 \times 35.45}{}=\frac{\text { These numbers are the masses of each }}{\text { element in a mole of the compound! }}
\end{aligned}
$$

So far, we have

- looked at how to determine the composition by mass of a compound from a formula
- converted from MASS to MOLES (related to the number of atoms/molecules)
- converted from MOLES to MASS

Are we missing anything?

- What about SOLUTIONS, where the desired chemical is not PURE, but found DISSOLVED IN WATER?
- How do we deal with finding the moles of a desired chemical when it's in solution?

MOLAR CONCENTRATION

- unit: MOLARITY (M): moles of dissolved substance per LITER of solution dissolved substance

$$
M=\text { molarity }=\frac{\text { moles of SOLUTE }}{\text { SOLUTION }}
$$

6.0 M HCl solution: $\frac{6.0 \mathrm{mul} \mathrm{HCl}}{L}$

If you have $0.250 \mathrm{~L}(250 \mathrm{~mL})$ of 6.0 M HCl , how many moles of HCl do you have?

$$
6,0 \mathrm{~mol} \mathrm{HCl}=L
$$

$$
0.250 \mathrm{~L} \times \frac{6.0 \mathrm{molhCl}}{L}=1.5 \mathrm{mul} \mathrm{HCl}
$$

87
If you need 0.657 moles of hydrochloric acid, how many liters of 0.0555 M HCl do you need to measure out?

$$
\begin{aligned}
& 0.05 S 5 \mathrm{~mol} \mathrm{HCl}=L \\
& 0.657 \mathrm{~mol} \mathrm{HCl} \times \frac{L}{0.0555 \mathrm{~mol} \mathrm{HCl}}=\frac{11.8 \mathrm{~L} \mathrm{of} 0.0555 \mathrm{~m} \mathrm{HCl}}{11800 \mathrm{~mL}}
\end{aligned}
$$

What if we used 6.00 M HCl ?

$$
6.00 \mathrm{~mol} \mathrm{HCl}=L
$$

$$
0.657 \mathrm{~mol} \mathrm{HCl} \times \frac{\mathrm{L}}{6.00 \mathrm{~mol} \mathrm{HCl}}=\frac{0.110 \mathrm{~L} \mathrm{of} 6.00 \mathrm{~m} \mathrm{HCl}}{110 \mathrm{~mL}}
$$

Example: How would we prepare 500 mL of 0.500 M sodium sulfate in water?
$\mathrm{Na}_{2} \mathrm{SO}_{4}: 142.05 \mathrm{~g} / \mathrm{mol}$
Dissolve the appropriate amount of sodium sulfate into enough water to make 500 mL of solution.

Find the moles of sodium sulfate in the solution using the volume and molarity.
$0.500 \mathrm{~mol} \mathrm{Na}_{2} \mathrm{SO}_{4}=\mathrm{L} \quad \mathrm{mL}=10^{-3 \mathrm{C}}$

$$
500 . \mathrm{mL} \times \frac{10^{-3} L}{m L} \times \frac{0,500 \mathrm{~mol} \mathrm{Na}_{2} \mathrm{SO}_{4}}{L}=0,250 \mathrm{~mol} \mathrm{Na} \mathrm{NO}_{4}
$$

Find the mass of sodium sulfate using moles and formula weight.

$$
142.0 \mathrm{ggNa}_{2} \mathrm{SO}_{4}=\mathrm{mol} \mathrm{Na} 2 \mathrm{SO}_{4}
$$

$0,2 \mathrm{SO}_{\mathrm{mol}} \mathrm{Na}_{2} \mathrm{SO}_{4} \times \frac{142.0 \mathrm{~g} \mathrm{Na}_{2} \mathrm{SO}_{4}}{\mathrm{~mol} \mathrm{Na}_{2} \mathrm{SO}_{4}}=3 \mathrm{S.S}_{\mathrm{g}} \mathrm{Na}_{2} \mathrm{SO}_{4}$
Weigh 35.5 grams of sodium sulfate into a 500 mL volumetric flask, and add water to the mark.

To prepare a solution of a given molarity, you generally have two options:

1
Weigh out the appropriate amount of solute, then dilute to the desired volume with solvent (usually water)
("stock solution"
(2) Take a previously prepared solution of known concentration and DILUTE it with solvent to form a new solution

- Use DILUTION EQUATION

The dilution equation is easy to derive with simple algebra.

$$
M \times \backslash
$$

$$
\frac{\text { mol }}{L} \times L=\text { moles solute }
$$

... but when you dilute a solution, the number of moles of solute REMAINS CONSTANT. (After all, you're adding only SOLVENT)

$$
\begin{array}{ll}
M_{1} V_{1}= & M_{2} M_{2} \mathbb{S i n c e}^{\text {after the number of moles of solute stays }} \\
\begin{array}{l}
\text { before } \\
\text { dilution }
\end{array} & \begin{array}{l}
\text { the same, this equality must be true! }
\end{array}
\end{array}
$$

