Conversion factors in metric
In the metric system, conversion factors between units may always be made from the metric prefixes!

$$
\begin{aligned}
& \text { For example, "K ,lo-" means } 10^{3} \\
& k=10^{3} \\
& \text { so } \\
& \frac{K g}{}=10^{3} \mathrm{~g} \\
& \frac{K m}{}=10^{3} \mathrm{~m} \\
& \frac{K s}{k L}=10^{3} \mathrm{~s} \\
& k L \begin{array}{l}
\text { Just apply the } \\
\text { prefix to the } \\
\text { base unit! }
\end{array}
\end{aligned}
$$

How do we actually USE a conversion factor?

* Similar to...

If $X=2$, then

$$
\frac{x}{2}=1
$$

1S.7S/EE-2 .. on TI-83

* This fraction equals one, so multiplying by it does not change the VALUE of the number, only its UNITS!

Convert 0.0183 kg to g $\mathrm{Kg}=10^{3} \mathrm{~g}$

$$
0,0183 \mathrm{k} / \mathrm{g} \times \frac{10^{3} \mathrm{~g}}{\mathrm{k} / \mathrm{g}}=18.3 \mathrm{~g}
$$

DRAG AND DROP

- Drag the part of the factor that contains the unit you want to get rid of (cancel out) to the BOTtOM.
- Then, drag the other half of the factor to the TOP

Convert 14500 mg to kg

$$
m g=10^{-3} \mathrm{~g} \quad \mathrm{Kg}=10^{3} \mathrm{~g}
$$

$$
14500 \mathrm{mg} \times \frac{10^{-3} \mathrm{~g}}{\mathrm{mg}} \times \frac{\mathrm{kg}}{10^{3} \mathrm{~g}}=0.014 \mathrm{Skg}
$$

When writing a factor from a prefix, remember that you cant "apply" a base that already has an exponent!
Convert $0.147 \mathrm{~cm}^{2}$ to m^{2}

$$
\left.0.147 \mathrm{csn}^{2} \times \frac{10^{-2} m}{c m} \times \frac{10^{-2} \mathrm{~m}}{\mathrm{~cm}}=1.47 \times 10^{-5} \mathrm{~m}^{2}\right)\left(0.0000147 \mathrm{~m}^{2}\right)
$$

When converting squared and cubed units, use each conversion factor two (squared) or three (cubed) times.

$$
c m^{2}=c m \times c m \quad c m^{3}=c m \times C m \times C m
$$

8.45 kg to $\mathrm{mg} \quad K g=10^{3} \mathrm{~g} \quad \mu \mathrm{~g}=10^{-6} \mathrm{~g}$

$$
8.45 \mathrm{~h} / \mathrm{g} \times \frac{10^{3} \mathrm{~g}}{\mathrm{k} / \mathrm{g}} \times \frac{\mathrm{mg}}{10^{-6} \mathrm{~g}}=\frac{8450000000 \mathrm{wg}}{\left(8.45 \times 10^{9} \mathrm{wg}\right)}
$$

88100 kHz to MHz	$\mathrm{KHz}_{z}=10^{3} \mathrm{~Hz}$	$\mathrm{~Hz}_{\mathrm{Z}}=\mathrm{S}^{-1}$ (Frequency)
	$\mathrm{MHz}^{2}=10^{\mathrm{Hzz}}$	

$$
88100 \mathrm{k} \mathrm{Kz} \times \frac{10^{3} \mathrm{~Hz}}{\mathrm{~K} \mathrm{~Hz}} \times \frac{\mathrm{MHz}}{10^{6} \mathrm{~Hz}}=88.1 \mathrm{MHz}
$$

