${ }^{125}$ Consider an 0.100 M solution of the weak base ammonia:
NH_{3} j $\mathrm{K}_{b}=1.8 \times 10^{-5}$ See Appendix lin OpenStax for Kb values
What is the pH ?

$$
\begin{aligned}
& \text { hat is the } \mathrm{pH} \text { ? } \\
& \mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NH}_{4}^{+}+\mathrm{OH}^{-} ; \mathrm{K}_{b}=1.8 \times 10^{-5} \quad \mathrm{~Kb}=\frac{\left[\mathrm{NH}_{4}^{+}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{NH}_{3}\right]}
\end{aligned}
$$

Set up an equilibrium chart:

Species	$\left[I_{n i t i a l}\right]$	Δ	$\left[\epsilon_{\text {quilibcium }]}\right.$
NH_{4}^{+}	0	$+X$	X
OH^{-}	0	$+X$	X
NH_{3}	0.100	$-X$	$0,100-x$
$\mathrm{~K}_{b}=\frac{\left[\mathrm{NH}_{4}+\right]\left[0 \mathrm{H}^{+}\right]}{\left[\mathrm{NH}_{3}\right]}=\frac{(x)(x)}{(0,100-x)}=1,8 \times 10^{-5}$Let "x" equal the ammonium ion concentration			

$$
\frac{x^{2}}{0.100-x}=1.8 \times 10^{-5}
$$

126

$$
\begin{aligned}
& \frac{x^{2}}{0.100-x}=1.8 \times 10^{-5} \\
& \downarrow \begin{array}{l}
\text { Assume } x \ll 0,100, \\
\text { so } 0.100-x \approx 0.100
\end{array} \\
& \frac{x^{2}}{0.100}=1.8 \times 10^{-5} \\
& x=0.0013416408=\left[\mathrm{OH}^{-}\right] \\
& \text {So, } \mathrm{POH}=-\log (0.0013416408)=2.87 \mathrm{POH}=-\log [O H 7] \\
& p H+2.87=14.00 \\
& \rho H+\rho O H=14.00 \\
& p H=11.13
\end{aligned}
$$

If we solve this problem using the quadratic equation instead of our simplifying assumption, we get a pH of $11.13 \ldots$ same as we got here.

Compare pH to the pH of an 0.100 M solution of the strong base NaOH : $\mathrm{pH}_{\mathrm{INH}_{3}}=11.13$

$$
\begin{aligned}
& \mathrm{NaOH}_{a} \rightarrow \mathrm{Na}^{+}+\mathrm{OH}^{-} \\
& {\left[\mathrm{OH}^{-}\right] }=[\mathrm{NaOH}]_{\text {nominal }}=0.100 \mathrm{M} \\
& \mathrm{POH}=1.00 \\
& \mathrm{PH}=13.00
\end{aligned}
$$

The stronger the base:

- the higher the pH will be for a solution of given concentration
- the higher the HYDROXIDE concentration (compared to the nominal base concentration)
${ }^{128}$ Find the pH and the degree of ionization for an 0.10 M solution of formic acid: HCHO_{2}

$$
\begin{aligned}
& \mathrm{HCHO}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{CHO}_{2}^{-}, \mathrm{Ka}=1.8 \times 10^{-4} \\
& K_{a}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{CHO}_{2}^{-}\right]}{\left[\mathrm{HCHO}_{2}\right]}=1.8 \times 10^{-4}
\end{aligned}
$$

Spears	$\left[I_{\text {nitial }}\right]$	Δ	$\left[\epsilon_{\text {quilibrium }}\right]$
$\mathrm{H}_{3} \mathrm{O}^{+}$	0	$+X$	X
CHO_{2}^{-}	0	$+X$	X
HCHO_{2}	0,10	$-X$	$0,10-X$

Let "x" equal the change in hydronium ion concentration

$$
\begin{gathered}
\frac{(x)(x)}{(0,10-x)}=1.8 \times 10^{-4} \\
\downarrow \text { Assume } x \ll 0,10 \\
\frac{x^{2}}{0,10}=1,8 \times 10^{-4}
\end{gathered}
$$

$$
\begin{aligned}
& x=0.0042426407=\left[H_{3} 0^{+}\right] \\
& \text {So, } \rho H=2.37
\end{aligned}
$$

... but what about degree of ionization?

$$
{ }^{12} \mathrm{HCHO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3 \mathrm{O}^{+}}+\mathrm{CHO}_{2}^{-}
$$

Degree of Ionization (DOI) is the fraction of a weak acid or base that ionizes in solution.

$$
\text { Here, that would be: } \frac{\left[\mathrm{HO}_{2}^{-}\right]}{\left[\mathrm{HCHO}_{2}\right]_{\text {nominal }}}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}{\left.\left[\mathrm{HCHO}_{2}\right]_{\text {nominal }}\right]}
$$

$$
\frac{0.0042426407 \mathrm{mH}_{30}}{0.10 \mathrm{~m} \mathrm{HCHO}}=0.042=D 0 \text { I fur th is } 0.10 \mathrm{mHCHO}
$$

Often, we express this as a percentage ... called PERCENT IONIZATION

$$
\% \text { ionization }=\text { DUI } \times 100=4.2 \% \text { ionization }
$$

When you do Experiment 16A. By Le Chateleir's Principle, adding water to the equilibrium should force it to the right - meaning that more acid will ionize - even as the pH goes up!. Therefore, the degree of (or percent) ionization should INCREASES as the concentration of the acid DECREASES. Check this with your experiment 16A data on acetic acid.

An aqueous solution of 0.25 M trimethylamine has a pH of 11.63. What's the experimental value of Kb?

$$
\begin{gathered}
\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons\left(\mathrm{CH}_{3}\right)_{3} \mathrm{NH}^{+}+\mathrm{OH}^{-} \\
\mathrm{Kb}=\frac{\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{NH}^{+}\right]\left[\mathrm{OH}^{-}\right]}{\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}\right]}
\end{gathered}
$$

We don't know Kb, so how do we proceed? Let's make an equilibrium chart to try to reduce the number of variables!

Species	[Initial]	D	$\left[\epsilon_{\text {quilibrium }]}\right.$
$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{NH}^{+}$	0	$+x$	x
OH^{-}	0	$+x$	x
$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}$	0.25	$-x$	$0.2 \delta-x$

Let " x " equal the change in trimethylammonium ion concentration.

Plug into the Kb expression

$$
\begin{aligned}
\frac{(x)(x)}{(0.25-x)} & =k b \\
\frac{x^{2}}{0.25-x} & =k_{b}
\end{aligned}
$$

Now what? We have fewer variables now, but there are still two...

131

$$
\frac{x^{2}}{0.25-x}=k_{b}
$$

If we had some other way to find the value of "x", we could then get Kb.
Use the pH to find the pOH , and then ($\mathrm{OH}-)$... which equals " x ".

$$
\begin{gathered}
11.63+p O H=14,00 \quad \mathrm{PH}+\rho 0 H=14,00 \\
p O H=2.37 \\
{[0 H]=0.0042657952 \quad[0 H-]=10^{-p O H}} \\
S 0, x=0.0042657952 \\
K b=\frac{x^{2}}{0.25-x}=\frac{(0.0042657952)^{2}}{0.25-0.0042657952}=7.4 \times 10^{-S}=K b
\end{gathered}
$$

