- In solutions of weak acids or bases, the UNDISSOCIATED form is present in significantly high concentration.
- The pH of a solution of weak acid will be HIGHER than the pH of a strong acid solution with the same nominal concentration!

- The pH of a solution of weak base will be LOWER than the pH of a strong base solution with the same nominal concentration!

Consider a 0.100 M solution of nitrous acid, a WEAK ACID $\left(\mathrm{HNO}_{2}\right)$

$$
\begin{array}{ll}
\mathrm{HNO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{NO}_{2}^{-} \\
\mathrm{Ka}_{\mathrm{a}}=\frac{\left[\mathrm{H}_{3} \mathrm{O}+\right]\left[\mathrm{NO}_{2}^{-}\right]}{\left[\mathrm{HNO}_{2}\right]}=4.6 \times 10^{-4} & \begin{array}{l}
\text { See } \\
\text { Appendix H } \\
\text { in OpenStax } \\
\text { for Ka values }
\end{array}
\end{array}
$$

What is the pH of the solution?
We will assume that all the hydronium ion comes from the acid. While nitrous acid is a weak acid, it's a lot stronger that water itself is! Set up an equilibrium chart for the acid.

Species	[InItial]	Δ	$\left[\epsilon_{\text {quilibrium }}\right]$
$\mathrm{H}_{30^{+}}$	0	$+X$	X
NO_{2}^{-}	0	$+X$	X
HNO_{2}	0,100	$-X$	$0.100-X$

Let "x" equal the change in hydronium ion concentration

Plug into the equilibrium expression (Ka) :

$$
\begin{aligned}
& \frac{(x)(x)}{(0.100-x)}=4.6 \times 10^{-4} \\
& \frac{x^{2}}{0.100-x}=4.6 \times 10^{-4}
\end{aligned}
$$

We need to solve this..

123

$$
\begin{aligned}
& \frac{x^{2}}{0.100-x}=4.6 \times 10^{-4} \\
& \text { Assume } x \ll 0.100 \\
& \text { so } 0.100-x=0.100 \\
& \frac{x^{2}}{0.100}=4.6 \times 10^{-4} \\
& x^{2}=4.6 \times 10^{-5} \\
& x=0.00678233 \\
& {[H 30+] }=0.00678233 \mathrm{~m} \\
& p H=2.17
\end{aligned}
$$

This is a quadratic, We can solve it with the quadratic equation:

$$
\begin{aligned}
& a x^{2}+b x+c=0 \\
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
\end{aligned}
$$

When can we assume x is small enough to ignore in the subtraction term?

1) Acid/base equilibrium, some solubility
2) ' x ' is defined as representing products
3) The Ka or Kb is 1000 x or more smaller than the initial concentration of acid or base

Using this simplifying assumption made this problem easy! But ... how good is this assumption?

Calculating the pH with the quadratic formula results in a pH of 2.18 , a difference of only 1 in the uncertain digit (lower than the margin of error of common pH measurements!)

Compare:

- Weak acid HNO_{2} : pH of 0.10 M solution $=2.17$

Let's compare the pH of the weak nitrous acid with the pH of a strong acid like nitric acid:

$$
0.10 \mathrm{mHNO}_{3} \text {, what is } \mathrm{pH}_{1} \text { ? }
$$

$$
\begin{aligned}
\mathrm{HNO}_{3}+\mathrm{H}_{2} \mathrm{O} & \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{NO}_{3} \\
{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] } & =\left[\mathrm{HNO}_{3}\right]_{\text {nominal }}=0.10 \mathrm{~m} \\
\mathrm{PH} & =1.00
\end{aligned}
$$

The stronger the acid:

- the lower the pH of a solution of given concentration will be
- the higher the concentration of hydronium ion (when compared to the nominal acid concentration)

