${ }^{118}$ (A) What is the concentration of hydronium ion in an aqueous solution whose pH is 10.50 ? (B) What is the hydroxide ion concentration? (C) What molar concentration of sodium hydroxide solution would provide this pH ?
(A)

$$
\begin{aligned}
& 10^{-10.50}=\left[\mathrm{H}_{3 \mathrm{O}^{+}}\right] \quad\left(\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-\mathrm{PH}}\right) \\
& {\left[\mathrm{H}_{3 \mathrm{O}^{+}}\right]=3.16227766 \times 10^{-11} \mathrm{~m} \approx 3.2 \times 10^{-11} \mathrm{M} \mathrm{H} \mathrm{H}_{3}+}
\end{aligned}
$$

(B)

$$
\begin{aligned}
& \left(3.16227766 \times 10^{-11}\right)\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-14}\left(\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right] 21.0 \times 10^{-14}\right) \\
& {\left[\mathrm{OH}^{-}\right]=0.000316228 \mathrm{M}=3.2 \times 10^{-4} \mathrm{M} \mathrm{OH}}
\end{aligned}
$$

(c)

$$
\begin{aligned}
& \mathrm{NaOH} \rightarrow \mathrm{Na}^{+}+\mathrm{OH}^{-} \\
& \text {So }[\mathrm{NaOH}]_{\text {nominal }}=3.2 \times 10^{-4} \mathrm{~m} \mathrm{NaO} \mathrm{kl}
\end{aligned}
$$

What is the pH of a sodium hydroxide solution made from dissolving 2.50 g of sodium hydroxide in enough water to make 500.0 mL of solution? $\mathrm{NaOH}: 40.00 \mathrm{~g} / \mathrm{mol}$

First, we need to find the concentration of the sodium hydroxide solution.

Find moles NaOH

$$
2.50_{\mathrm{g}} \mathrm{NaOH} \times \frac{\mathrm{mol} \mathrm{NaOH}}{40.00 \mathrm{~g} \mathrm{NaOH}}=0.0625 \mathrm{~mol} \mathrm{NaOH}
$$

rind molarity

$$
M=\frac{\text { mol NaOH }}{L \text { solution }}=\frac{0.0625 \mathrm{~mol} \mathrm{NaOH}}{0.500 \mathrm{~L}}=0.125 \mathrm{~m} \mathrm{NaOH}
$$

The HYDROXIDE ion concentration equals the nominal NaOH concentration...

$$
\begin{gathered}
{\left[\mathrm{OH}^{-}\right]=0.125 \mathrm{MOH}} \\
\mathrm{POH}=-\log _{10}(0.125)=0.90 \\
\mathrm{PH}+0.90=14.00 \\
\text { PH }=13.10
\end{gathered}
$$

$$
\left(\mathrm{pOH}=-\log _{10}\left[\mathrm{OH}^{-}\right]\right)
$$

$$
(\rho H+\rho O H=14,00)
$$

For a WEAK ACID, equilibrium does not lie far to the right. The ionization equilibrium of the acid itself is important!

$$
\begin{aligned}
& H A+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{t}+A^{-} \\
& \left.\qquad \mathrm{Ka}_{a}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[A^{-}\right]}{\frac{[H A]}{}}\right] \begin{array}{c}
\text { Again, water's concentration will } \\
\text { not change significantly, so it is } \\
\text { folded into the ionization constant }
\end{array} \\
& \text { acid } \begin{array}{l}
\text { (HA) }=\text { concentration of undissociated acid } \\
\text { ionization- } \\
\text { constant }
\end{array}
\end{aligned}
$$

For a WEAK BASE, equilibrium does not lie far to the right. The ionization equilibrium of the base itself is important!

$$
\begin{aligned}
& \quad \mathrm{B}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{BH}^{+}+\mathrm{OH}^{-} \\
& \mathrm{K}_{b}=\frac{\left[\mathrm{BH}^{+}\right]\left[\mathrm{OH}^{-}\right]}{[\mathrm{B}]}
\end{aligned}
$$

Values for Ka and Kb can often be found in data books / tables / or on the web.

In OpenStax, these constants are in Appendix H and Appendix I!

