RELATING MASS AND MOLES

- Use DIMENSIONAL ANALYSIS (a.k.a "drag and drop")
- Need CONVERSION FACTORS - where do they come from?
- We use ATOMIC WEIGHT as a conversion factor.

Example: How many moles of atoms are there in $250 . \mathrm{g}$ of magnesium metal?

$$
\begin{aligned}
& 24.31 \mathrm{gmg}=\text { mol } \mathrm{mg}_{\mathrm{g}} \\
& 250 . \mathrm{gmg} \times \frac{\mathrm{mol} \mathrm{mg}}{24.31 \mathrm{gmg}}=10.3 \mathrm{~mol} \mathrm{mg}
\end{aligned}
$$

Example: You need 1.75 moles of iron. What mass of iron do you need to weigh out on the balance?

We need to use the ATOMIC WEIGHT as a conversion factor:
Fe: 55.85 (from periodic table)
$55.8 \mathrm{Sg} \mathrm{Fe}=\mathrm{mol} \mathrm{Fe}$

$$
1.75 \text { mol } \mathrm{Fe} \times \frac{55.85 \mathrm{~g} \mathrm{Fe}}{\mathrm{~mol} \mathrm{Fe}}=97.7 \mathrm{~g} \mathrm{Fe}
$$

Example: 25.0 g of WATER contain how many MOLES of water molecules?

$$
\begin{aligned}
\mathrm{H}_{2} \mathrm{O}: \quad \begin{aligned}
& H: 2 \times 1.008=2.016 \\
& \mathrm{O}: 1 \times 16.00=\frac{16.00}{18.0161-\mathrm{FORN}} \\
& 18.016 \mathrm{~g} \mathrm{H} \mathrm{O}=\mathrm{mol} \mathrm{H}
\end{aligned} \\
2 \mathrm{O} \quad \begin{array}{l}
\text { FORMULA WEIGHT } \\
\text { of either an elem }
\end{array} \\
2 \mathrm{O} \mathrm{H} / 2 \mathrm{O} \times \frac{\text { mol H2O }}{18.016 \mathrm{gH} \mathrm{H}_{2} \mathrm{O}}=1.39 \mathrm{~mol} \mathrm{H}
\end{aligned}
$$

Formula weight goes by several names:

- For atoms, it's the same thing as ATOMIC WEIGHT
- For molecules, it's called MOLECULAR WEIGHT
- Also called "MOLAR MASS"
${ }^{83}$
Example: How many grams of barium chloride do we need to weigh out to get 3.65 moles of barium chloride?

FINALLY, caclulate the mass of barium chloride required

$$
3.6 \mathrm{Smol} \mathrm{BaCl}_{2} \times \frac{208.2 \mathrm{~g} \mathrm{BaCl}_{2}}{\mathrm{~mol} \mathrm{BaCl}_{2}}=76 \overline{\mathrm{~g} \mathrm{BaCl}_{2}}
$$

PERCENTAGE COMPOSITION

- sometimes called "percent composition" or "percent composition by mass"
- the percentage of each element in a compound, expressed in terms of mass Example: Find the percentage composition of barium chloride.

$$
\begin{aligned}
& \begin{aligned}
\mathrm{BaCl}_{2}: \mathrm{Ba}: 11 \times 137.3= & 137.3 \quad \begin{array}{l}
\text { These numbers are the masses } \\
\text { element in a mole of the con }
\end{array} \\
& \frac{\mathrm{Cl}: 2 \times 35.45=}{208.2 \mathrm{~g} \mathrm{BaCl}}=\mathrm{mul} \mathrm{BaCl}
\end{aligned} \\
& \% \mathrm{Ba}_{\mathrm{a}}: \frac{137.3 \mathrm{~g} \mathrm{Bu}}{208.2 \mathrm{~g}+\text { tala }} \times 100=65.95 \% \mathrm{Ba} \\
& \%\left(1: \frac{70.90 \mathrm{gCl}}{208.2 \text { total }} \times 100=34.05 \% \mathrm{Cl}\right. \\
& \text { Within roundoff } \\
& \text { error, these should } \\
& \text { sum to } 100 \%
\end{aligned}
$$

So far, we have

- looked at how to determine the composition by mass of a compound from a formula
- converted from MASS to MOLES (related to the number of atoms/molecules)
- converted from MOLES to MASS

Are we missing anything?

- What about SOLUTIONS, where the desired chemical is not PURE, but found DISSOLVED IN WATER?
- How do we deal with finding the moles of a desired chemical when it's in solution?

MOLAR CONCENTRATION

- unit: MOLARITY (M): moles of dissolved substance per LITER of solution

$$
\begin{aligned}
& M=\text { molarity }=\frac{\text { moles of SOLUTE }_{\text {LSOLUTISolved sun }}}{} \\
& 6,0 \mathrm{M} \mathrm{HCl} \text { solution: } \frac{6,0 \mathrm{mul} \mathrm{HCl}}{L}
\end{aligned}
$$

If you have $0.250 \mathrm{~L}(250 \mathrm{~mL})$ of 6.0 M HCl , how many moles of HCl do you have?

$$
\begin{gathered}
G .0 \mathrm{~mol} \mathrm{HCl}=L \\
0.250 \mathrm{~L} \times \frac{6.0 \mathrm{mul} \mathrm{HCl}}{L}=1.50 \mathrm{mu} 1 \mathrm{HCl}
\end{gathered}
$$

If you need 0.657 moles of hydrochloric acid, how many liters of 0.0555 M HCl do you need to measure out?

$$
\begin{aligned}
& 0.055 \mathrm{~mol} \mathrm{HCl}=C \\
& 0.65) \mathrm{mul} \mathrm{HCl} \times \frac{\mathrm{L}}{0.0555 \mathrm{mul} \mathrm{HCl}}=\frac{11.8 \mathrm{~L}}{(11800 \mathrm{~mL})}
\end{aligned}
$$

What if we used 6.00 M HCl ?

$$
6,00 \mathrm{~mol} \mathrm{HCl}=L
$$

$$
0,65) \mathrm{mul} \mathrm{HCl} \times \frac{\mathrm{L}}{6,00 \mathrm{mulHCl}}=\frac{0.110 \mathrm{~L}}{(110 \mathrm{~mL})}
$$

