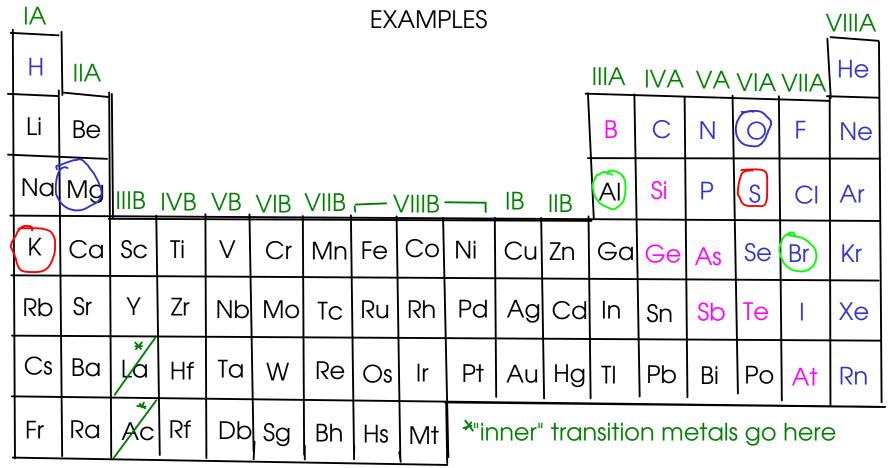
PREDICTING CHARGES

- how do you figure out the charge that an element might take when it becomes an ion?

- for many main group elements, you cah predict the charge using the periodic table!

IA	1																VIIIA
Н	IIA										-	IIIA	IVA	VA	VIA	VIIA	He
Li	Be											В	С	Ν	0	F	
Na	Mg	IIIB	IVB	VB	VIB	VIIB	· \	VIIIB		IB	IIB	Al	Si	Ρ	S	CI	Ar
К	Са	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	I	Xe
Cs	Ba	Ļa	Hf	Ta	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Ро	At	Rn
Fr	Ra	AC	Rf	Db	Sg	Bh	Hs	Mt	*"ir	ner"	trar	nsitic	n m	etals	s go	here	<u>'</u> }

Elements in group VIIIA - the "noble gases" - do not form ions!


Many OTHER main-group elements form either anions or cations that have the same overall number of electrons as the NEAREST (in terms of atomic number) noble gas!

IA	l	PREDICTING CHARGE															VIIIA		
Н	IIA	Vo	ucar	relia	bly de	IIIA	IVA	VA		VIIA	He								
Li	Be	me	ethod	for G	roups , VIA,		В	С	Ν	0	F	۱٥ Ne							
Na	Mg	IIIB	IVB	VB	VIB	VIIB	, <u> </u>	VIIIB		IB) IIB	AI	Si	Ρ	S	CI	<mark>رو</mark> Ar		
K	Са	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	26 Kr		
Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	l	<mark>sң</mark> Хе		
Cs	Ba	Ļa	Hf	Ta	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Ро	At	Rn		
Fr	Ra	AC	Rf	Db	Sg	Bh	Hs	Mt	*"inner" transition metals go here										

Aluminum (AI): At atomic number 13, it is three electrons away from neon (Ne), and 5 electrons away from argon (Ar). Prediction: Aluminum will lose three electrons to form the cation Al^{3+7}

Bromine (Br): At atomic number 35, bromine is one electron away from krypton (Kr). Prediction: Bromine will gain one electron to form the anion Br-

Strontium (Sr): At atomic number 38, strontium is two electrons away from krypton. Prediction: Strontium will lose two electrons to form the cation Sr $^{2+}$

Find the formulas of:

(1) an ionic compound containing AI and Br

(2) an ionic compound containing Mg and O

(3) an ionic compound containing S and K

Find the formula of:

* an ionic compound containing AI and Br

Find the formula of:

* an ionic compound containing Mg and O

Find the formula of: * an ionic compound containing S and K

IA	1	TRANSITION METAL IONS															VIIIA
Н	IIA										-	IIIA	IVA	VA	VIA	VIIA	He
Li	Be											В	С	Ν	0	F	Ne
Na	Mg	IIB	IVB	VB	VIB	VIIB	\	VIIIB		IB	IIB	AI	Si	Ρ	S	CI	Ar
К	Ca	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	I	Xe
Cs	Ba	Ļa	Hf	Ta	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt	*"ir	ner"	trar	nsitic	n m	etals	s go	here)

The transition metals always form CATIONS!

However, many transition metals are capable of forming SEVERAL DIFFERENT CATIONS!

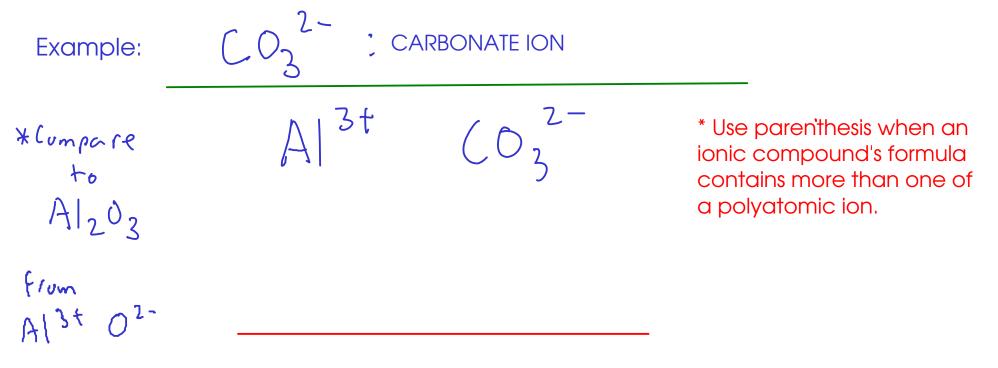
Example: Iron (Fe) forms two cations, depending on the situation: Fe²⁺ or Fe³⁺

TRANSITION METAL CATIONS

- So how do you know which cation you're dealing with? For now, you'll have to be told

- Either the chemical formula of an ionic compound or the name of an ionic compound can tell you what charge is on the transition metal cation.

Examples:


te3N

FEN

POLYATOMIC IONS

- Some MOLECULES can gain or lose electrons to form CATIONS or ANIONS. These are called POLYATOMIC IONS

- Polyatomic ions form ionic compounds in the same way that single-element ions do.

See the web site or Openstax page 100 - table 2.5 for a list of common polyatomic ions!

NAMES OF IONS

- To properly discuss ions and ionic compounds, we have to know how to name them! CATIONS

3 kinds:

Main group cations (metals that take only one charge when forming ions)

- The element's name is the same as the ion's name!

Mg[−]: "magnesium ion"

Transition metal cations (from metals that can form several cations)

- The CHARGE of the cation must be given. Use a ROMAN NUMERAL after the element name to indicate charge!

Cut: "copper(I) 100 " 2↓ Fe : "iron(II) ion" St Fe : "Iron(III) ion"

Polyatomic cations

- Memorize list. NH 4 : "ammonium ion" ANIONS 2 kinds Main-group nonmetals - Use the STEM NAME of the element, then add "-ide" suffix N³⁻: "<u>nitr</u>ide" ion P³⁻: "<u>phosp</u>hide ion" S²: Sulfide Iun O^{2-} : "oxide ion" F : "fluoride ion" Polyatomic ions - Memorize list. (see web site)

NO3 : "nitrate ion"

NO₂ : "nitrite ion"

 $C_2 H_3 O_2$: "acetate ion" SO_4^2 : "sulfate ion"

* Polyatomic ions ending in "-ate" and "-ite" suffixes always contain oxygen! "-ate" ions have more oxygen atoms than their "-ite" counterparts.

NAMING IONIC COMPOUNDS

- The name of the compound is based on the name of the ions in the compound
- Cation first, anion second

Examples:

$$M_{g}(OH)_{2}$$

 Fe_2O_3

CuO

Baz (PDy)2

(ugl

* Remember to include the Roman numeral for CHARGE when you're writing transition metal compound names!

(See Openstax p 100 for a chart of polyatomic ions)