Find the pH of 0.17 M methylamine.

$$
\begin{aligned}
& \mathrm{CH}_{3} \mathrm{NH}_{2} ; \mathrm{K}_{b}=4.4 \times 10^{-4}\left(\mathrm{Append}_{1 \times} \mathrm{I}\right) \\
& \mathrm{CH}_{3} \mathrm{NH}_{2}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{CH}_{3} \mathrm{NH}_{3}^{+}+\mathrm{OH}^{-} ; \mathrm{K}_{b}=\frac{\left[\mathrm{CH}_{3} \mathrm{NH}_{3}+\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{CH}_{3} \mathrm{NH}_{2}\right]}
\end{aligned}
$$

Solve for hydroxide concentration.

Spelles	$\left[I_{n} t_{14}\right]$	Δ
OH^{-}	0	$+x$
$\frac{\left(\mathrm{H}_{3} \mathrm{NH}_{3}^{+}\right.}{}$	0	$+X$
$\frac{\left(\mathrm{H}_{3} \mathrm{NH}_{2}\right.}{}$	0.17	$-x$
$\frac{(X)(x)}{O .17-x}$		
$\frac{x^{2}}{0.17-x}$	$=4.4 \times 10^{-4}$	
$.4 \times 10^{-4}$		

$$
\downarrow^{\text {Assume }} x<c 0.17
$$

$$
\begin{aligned}
\frac{x^{2}}{0.17} & =4.4 \times 10^{-4} \\
x & =0.0086486993=\left[0 H^{-}\right] \\
p O H & =2.06 \quad \text { OOH }
\end{aligned}=-\log _{10}\left[0 H^{-}\right]
$$

${ }^{2}$ Find the pH of 0.11 M hypochlorous acid

$$
\begin{aligned}
& \left.\mathrm{HClO}, \mathrm{Ka}_{a}=2.9 \times 10^{-8} \text { (Appendix } \mathrm{H}\right) \\
& \mathrm{HClO}+\mathrm{H}_{2} \mathrm{O} \underset{\mathrm{E}}{ } \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{ClO}^{-} \quad \mathrm{K}_{a}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{ClO}^{-}\right]}{[\mathrm{HClO}]}
\end{aligned}
$$

Solve equilibrium for hydronium ion concentration.

Species	[Initial	Δ	$[$ Equilibrium $]$
$\mathrm{H}_{30^{+}}$	0	$+X$	x
ClO^{-}	0	$+x$	x
HClO	0.11	$-x$	$0.11-x$

Let "x" equal the change in hydronium ion concentration

$$
\begin{aligned}
& \frac{(x)(x)}{0.11-x}=2.9 \times 10^{-8} \\
& \int_{\text {Assume }} x<C 0,11 \\
& \frac{x^{2}}{0.11}=2.9 \times 10^{-8}
\end{aligned}
$$

$$
x=5.648008499 \times 10^{-5}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]
$$

$$
p H=4.25
$$

Find the pH of 0.030 M sodium hydroxide.

Strong base. NaOH completely ionizes in water:

$$
\begin{aligned}
& \mathrm{NaOH} \rightarrow \mathrm{Na}^{+}+\mathrm{OH}^{-} \text {, } \mathrm{So}_{0} \\
& {\left[\mathrm{OH}^{-}\right]=0.030 \mathrm{M}} \\
& \text { oOH }=1.52 \quad \mathrm{SOH}=-\log _{10}\left[\mathrm{OH}^{-}\right] \\
& P H=12.48 \quad \rho H+p O H=14.00
\end{aligned}
$$

${ }^{4}$ An 0.15 M solution of monoprotic acid has a pH of 2.80 at 25 C . Find the Ka of the acid

$$
\mathrm{HA}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{A}^{-} ; \mathrm{Ha}_{a}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{A}^{-}\right]}{\left[\mathrm{HA}^{\prime}\right]}
$$

Set up a chart to reduce the number of variables.

Species	$\left[I_{\text {nitinl }}\right]$	Δ	[Equilibrium $]$
$\mathrm{H}_{3} \mathrm{O}^{+}$	0	$+X$	x
A^{-}	0	$+x$	x
$H A$	0.15	$-x$	$0.15-x$

Let "x" equal the change in hydronium ion concentration.

$$
\begin{aligned}
\frac{(x)(x)}{(0.15-x)} & =K_{a} \\
\frac{x^{2}}{0,15-x} & =K_{a}
\end{aligned}
$$

Use the pH to find the value of

$$
\begin{aligned}
& \text { Plug "x" back into Ka equation. } \\
& \frac{(0.0015848932)^{2}}{0.15-0.0015848932}=K_{a} \\
& 1.7 \times 10^{-5}=\mathrm{Ka}_{a}
\end{aligned}
$$

$$
\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=y=10^{-2.80}\left(\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-\mathrm{pH}}\right)
$$

$$
x=0.0015848932
$$

What is the pH of a solution that contains both 0.15 M formic acid and 0.10 M sodium formate?

This is a buffer, since it contains significant concentrations of a weak acid (formic acid) and its conjugate base (formate ion). Use the Henderson-Hasselbalch equation.

$$
\begin{aligned}
& p H=p k q+\log \left(\frac{[\text { basilspecies }]}{[a \Delta d i c \text { species }]}\right)<0.10 m \\
& \overbrace{K_{a, H C O O H}=1,8 \times 10^{-4}\left(A_{p p e n d} \text { y } H\right)} \\
& \text { pea }=3.74 \\
& p H=3.74+\log \left(\frac{0.10 \mathrm{~m}}{0.15 m}\right) \\
& p H=3.57
\end{aligned}
$$

