136

$$
\mathrm{NH}_{4}{ }^{+}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{NH}_{3}+\mathrm{H}_{3} \mathrm{O}^{+} ; \mathrm{K}_{4}=\frac{\left[\mathrm{NH}_{3}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}{\left[\mathrm{NH}_{4}^{+}\right]}=5, S 6 \times 10^{-10}
$$

Now that we have Ka, solve as a normal weak acid.

$0.100 \mathrm{M} \mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$, Find pH

$$
\mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2} \rightarrow \mathrm{Na}^{+}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}
$$

Na^{+}: Not a proton donor (acid), since no H+ to donate. Also not likely to be basic, as the positive charge should repel H+. NEUTRAL.
$\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}:$Negative charge ... this might accept protons and be a base. If so, the reaction looks like this:

$$
\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \frac{\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}}{\langle\text { Stable in water? }}
$$

\angle Stable in water? This is ACETIC ACID, a common
WEAK ACID. Weak acids are stable in water, since very few weak acid molecules ionize! So, acetate ion is a base.

$$
\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}+\mathrm{OH}^{-} ; \mathrm{Kb}_{b}=\frac{\left[\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}\right]}=?
$$

Appendix I doesn't list a Kb for acetate ion, but Appendix H has a Ka for acetic acid, its conjugate.

$$
\begin{gathered}
K_{a} \times K_{b}=1.0 \times 10^{-14} \quad K_{a}, H C_{2} H_{3} O_{2}=1.8 \times 10^{-5} \\
\left(1.8 \times 10^{-S}\right) K_{b}=1.0 \times 10^{-14} \\
K_{b}=5.56 \times 10^{-10}
\end{gathered}
$$

138

$$
\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}+\mathrm{OH}^{-} ; \mathrm{Kb}_{b}=\frac{\left[\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}\right]}=5.56 \times 10^{-10}
$$

Once we find Kb , just solve like any other weak base.

Species	[Initial]	Δ	[Equal, brim]
OH^{-}	0	$+X$	X
$\mathrm{H}\left(2 \mathrm{H}_{3} \mathrm{H}_{2}\right.$	0	$+X$	x
$\frac{\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}}{}$	0,100	$-X$	$0.100-x$
$\frac{(x)(x)}{(0.100-x)}=S . S 6 \times 10^{-10}$	pu		

Let "x" equal the change in hydroxide ion concentration!

$$
\begin{aligned}
& \sqrt{0.100-x=0,100} \\
& \frac{x^{2}}{0.100}=5.56 \times 10^{-10} \\
& x=7.45 \times 10^{-5} m=\left[0 H^{-}\right]
\end{aligned}
$$

$$
\begin{aligned}
& p O H=-\log _{10}\left(7,45 \times 10^{-5}\right)=4,12 \\
& p H+\rho O H=141,00 \\
& p H=14,00-4,12=9.87
\end{aligned}
$$

For comparison:
0.100 M sodium acetate, $\mathrm{pH}=9.87$
0.100 M ammonia, $\mathrm{pH}=11.13$
0.100 M NaOH (strong base), $\mathrm{pH}=13.00$

The acetate ion is basic, but it's a very weak base!
0.100 M NaCl , Find PH

$$
\mathrm{NaCl} \rightarrow \mathrm{Na}^{+}+\mathrm{Cl}^{-}
$$

Na^{+}: Not a proton donor (acid), since no H+ to donate. Also not likely to be basic, as the positive charge should repel H+. NEUTRAL.
Cl^{-}; Not a proton donor (acid), since it has no protons $(\mathrm{H}+$) to donate. It does have a negative charge, and may attract protons. If so, this would be the reaction:
 completely ionize, so they are NOT stable in water. This reaction won't happen! Chloride ion should be NEUTRAL.

In a NaCl solution, water itself controls the pH. So, the pH will be 7.00
${ }^{141}$ POLYPROTIC ACIDS
Find pH of $\mathrm{O}, 10 \mathrm{M} \mathrm{H}_{3} \mathrm{PO}_{4}$
... what's special about phosphoric acid?
(1) $\mathrm{H}_{3} \mathrm{PO}_{4}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{2} \mathrm{PO}_{4}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}$

Phosphoric acid has THREE acidic protons!
(2) $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{HPO}_{4}^{2-}+\mathrm{H}_{3} \mathrm{O}^{+}$
(3)

$$
\left.\mathrm{HPO}_{4}^{2-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{PO}_{4}^{3-}+\mathrm{H}_{3} \mathrm{O}^{+}\right]
$$

$$
\begin{aligned}
& K_{a_{2}}=6.2 \times 10^{-8} \\
& K_{a_{3}}=4.2 \times 10^{-13}
\end{aligned}
$$

The first dissociation is dominant here, and for simple calculations of phosphoric acid in water, we will simply use the first ionization and ignore the other two.

Remember: This is a weak acid. It exists in water mostly as undissociated phosphoric acid molecules.

Solve the equilibrium of phosphoric acid's FIRST proton:

$$
\begin{aligned}
& \text { Solve the equilibrium of phosphoric acid's FIRST proton: } \\
& \mathrm{H}_{3} \mathrm{PO}_{4}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{2} \mathrm{PO}_{4}^{-}+\mathrm{H}_{3} \mathrm{O}^{+} ; \mathrm{K}_{a}=7.5 \times 10^{-3} \\
& \mathrm{~K}_{4}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{H}_{2} \mathrm{PU}_{4}-\right]}{\left[\mathrm{H}_{3} \mathrm{PO}_{4}\right]}=7.5 \times 10^{-3}
\end{aligned}
$$

Species	[Initial]	Δ	[Equilibrium]
$\mathrm{H}_{3} \mathrm{O}^{+}$	0	$+X$	x
$\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$	0	$+X$	x
$\mathrm{H}_{3} \mathrm{Pu}_{4}$	0.10	$-x$	$0.10-x$
$(x)(x)$			

Let " x ' equal the change in hydronium ion concentration

$$
\begin{gathered}
\frac{(x)(x)}{(0.10-x)}=7.5 \times 10^{-3} \\
\pm x \ll 0.10 \\
500.10-x=0.10 \\
\frac{x^{2}}{0.10}=7.5 \times 10^{-3}
\end{gathered}
$$

$$
\begin{aligned}
& x=0.0273861279=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \\
& \mathrm{pH}=1.56
\end{aligned}
$$

Check this in experiment 16A. You'll measure the pH of this same concentration of phosphoric acid yourself. It may be slightly lower, since we ignored the other two acid ionizations.
${ }^{143}$ Find the pH of a solution prepared by dissolving 3.00 g of ammonium nitrate (FW=80.052 g/mol) solid into enough water to make 250 mL of solution.
$\mathrm{NH}_{4} \mathrm{NO}_{3} \rightarrow \mathrm{NH}_{4}^{+}+\mathrm{NO}_{3}^{-}$is this salt acidic, basic, or neutral?
$\mathrm{NH}_{4}{ }^{+}$: Has protons? Might be a proton donor (acid):

$$
\mathrm{NH}_{4}^{+}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \frac{\mathrm{NH}_{3}+\mathrm{H}_{3} \mathrm{O}^{+}}{L \text { Ammonia. } A}
$$

this reaction will go. Ammonium ion is ACIDIC.
$\mathrm{NO}_{3}{ }^{-}$: Could this be a proton acceptor (base)?

$$
\begin{aligned}
& \mathrm{NO}_{3}^{-}+\mathrm{H}_{2} \mathrm{O} \stackrel{\sim}{\subset} \mathrm{HNO}_{3}+\mathrm{OH}^{-} \\
& \text {Nitric acid, a STRONG ACID. Not stable i } \\
& \text { reaction doesn't go! Nitrate is NEUTRAL. }
\end{aligned}
$$

Nitric acid, a STRONG ACID. Not stable in water, so this

Appendix I has Kb for ammonia, so we can calculate Ka for ammonium ion:

$$
\begin{aligned}
& K_{b}, N H_{3}=1,8 \times 10^{-5} K_{a} \times k_{b}=1,0 \times 10^{-14} \\
& K_{a}\left(1,8 \times 10^{-5}\right)=1,0 \times 10^{-14} ; k_{a}=5.56 \times 10^{-10}
\end{aligned}
$$

Well need to know the MOLAR concentration of the solution. Calculate.

$$
\begin{aligned}
& 3.00 \mathrm{~g}_{4} \mathrm{NH}_{3} \times \frac{\mathrm{mul} \mathrm{NH}_{4} \mathrm{NO}_{3}}{80.0 \mathrm{Nr}_{4} \mathrm{NH}_{4} \mathrm{NH}_{3}}=0.0374756408 \mathrm{mul} \mathrm{NH} \\
& m=\frac{0.0374756408 \mathrm{~mol} \mathrm{NH}_{4} \mathrm{NC}_{3}}{0.250 \mathrm{~L}}=0.1499025633 \mathrm{MNH}_{4} \mathrm{NO}_{3}
\end{aligned}
$$

144

$$
\begin{aligned}
& \mathrm{NH}_{4}{ }^{+}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NH}_{3}+\mathrm{H}_{3} \mathrm{O}^{+}, \mathrm{Ka}=\frac{\left[\mathrm{NH}_{3}\right]\left[\mathrm{H}_{3}{ }^{+}\right]}{\left[\mathrm{NH}_{4}+\right]}=\mathrm{S} . \mathrm{S} 6 \times 10^{-10} \\
& 0.1499025633 \mathrm{MNH}_{4} \mathrm{NO}_{3}
\end{aligned}
$$

Solve the acid ionization equilibrium.

Species	[Initial]	Δ	$\left[\epsilon_{\text {qu }}\right.$
$\mathrm{H}_{30}+$	0	$+x$	
NH_{3}	0	$+x$	
$\mathrm{NH}_{4}{ }^{+}$	0.1499025633	$-X$	0.1499
$\frac{(x)(x)}{(0.1499025633-x)}$	$=5.56 \times 10^{-10}$		

Let "x" equal the change in hydronium ion concentration

