115

$$
\begin{aligned}
& \text { IS 1.90 g/ mol } \\
& 10 \mathrm{FeSO}_{4}+2 \mathrm{KMnO}_{4}+8 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow 5 \mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}+2 \mathrm{mnSO}_{4}+\mathrm{K}_{2} \mathrm{SO}_{4} \\
&+8 \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

How many mL of 0.250 M potassium permanganate are needed to react with 3.36 g of iron(II) sulfate?

1) Convert 3.36 grams iron(II) sulfate to moles. Use FORMULA WEIGHT.
2) Convert moles iron(II) sulfate to moles potassium permangenate. Use CHEMICAL EQUATION.
3) Convert moles potassium permangenate to solution volume. Use MOLARITY (0.250 M).

$$
\begin{aligned}
& \text { (1) } 151.90_{\mathrm{gFeSO}_{4}}=\mathrm{mol} \mathrm{FeSO}_{4} \text { (2) } 1 \mathrm{mul} \mathrm{FeSO}_{4}=2 \mathrm{mulhm}_{n} \mathrm{mO}_{4} \\
& \text { (3) } 0.250 \mathrm{mul} \mathrm{KMnO}_{4}=L \\
& 3.36 \mathrm{gFeSO}_{4} \times \frac{\mathrm{mulFeSO}_{4}}{1 \mathrm{SI}_{1.90} \mathrm{gFeSO}_{4}} \times \frac{2 \mathrm{mul} \mathrm{hrnn}_{4}}{10 \mathrm{mulFeSO}_{4}} \times \frac{L}{0.2 \mathrm{SO}_{0} 1 \mathrm{FrnnO}_{4}}=0.017695852 \mathrm{SL}
\end{aligned}
$$

Convert final answer to mL , since the problem specified that unit.

$$
\begin{aligned}
& m L=10^{-3} \mathrm{~L} \\
& 0.0176958525 \mathrm{~L} \times \frac{m L}{10^{-3} \mathrm{~L}}=17.7 \mathrm{~mL} \text { of } 0.250 \mathrm{~m} \mathrm{KMnO}_{4}
\end{aligned}
$$

CONCEPT OF LIMITING REACTANT

- When does a chemical reaction STOP?

- When does this reaction stop? When burned in open air, this reaction stops when all the MAGNESIUM STRIP is gone. We say that the magnesium is LIMITING.
- This reaction is controlled by the amount of available magnesium
- At the end of a chemical reaction, the LIMITING REACTANT will be completely consumed but there may be amount of OTHER reactants remaining. We do chemical calculations in part to minimize these "leftovers".

LIMITING REACTANT CALCULATIONS

- To find the limiting reactant, calculate how much product would be produced from ALL given reactants. Whichever produces the SMALLEST amount of product is the limiting reactant, and the smallest anount of product is the actual amount of product produced.
Example: $56.08 \quad 12.01 \Delta 4.10<$ - Formula weights

$$
\xrightarrow{56.08}\left(\mathrm{COO}(\mathrm{~s})+3^{12,01} \mathrm{C}(\mathrm{~s}) \xrightarrow{\Delta}\left(\begin{array}{c}
64,10<\text { Formula weights } \\
\mathrm{aC} \\
2
\end{array} \mathrm{~s}\right)+\mathrm{CO}(\mathrm{y})\right.
$$

If you start with 100. g of each reactant, how much calcium carbide would be produced?

$$
\begin{aligned}
& \text { (1) } 56,08 \mathrm{gCaO}=\mathrm{mol} \mathrm{CaO}(2) \mathrm{mol} \mathrm{CaO}_{\mathrm{al}}=\mathrm{mal} \mathrm{CaC}_{2} \text { (3) } 64.10 \mathrm{~g} \mathrm{CaC}_{2}=\mathrm{mol} \mathrm{CaCl}_{2}
\end{aligned}
$$

(1) 12.0$)_{g} \mathrm{C}=\mathrm{mol} \mathrm{C}(2) 3 \mathrm{mulC}=\mathrm{mol} \mathrm{Cal} 2$ (3) $\left.64, \log _{g} \mathrm{Cal}_{2}=\mathrm{mu}\right) \mathrm{Cal}_{2}$

$$
100 . g\left(\times \frac{\operatorname{mul}(}{12.0) g_{\mathrm{g}}} \times \frac{\operatorname{mol~cac} 2}{3 \mathrm{molc}} \times \frac{64, \log _{a} \mathrm{C}_{2}}{\operatorname{mol} \mathrm{cal}_{2}}=178 \mathrm{~g} \mathrm{CaC} 2\right.
$$

The reaction stops when 114 grams of calcium carbide have been made. At that point, there is no more GaO left. We say that GaO is LIMITING and C is present IN EXCESS.

PERCENT YIELD

- Chemical reactions do not always go to completion! Things may happen that prevent the conversion of reactants to the desired/expected product!
(1) SIDE REACTIONS:

$$
\mathrm{C}+\mathrm{O}_{2} \longrightarrow \mathrm{CO}_{2} \left\lvert\, \begin{aligned}
& \text { This reaction occurs when there is a large amount } \\
& \text { of oxygen available }
\end{aligned}\right.
$$

$$
2 \mathrm{C}+\mathrm{O}_{2} \longrightarrow 2 \mathrm{CO} \left\lvert\, \begin{aligned}
& \ldots \text { while this reaction is more favorable in low-oxygen } \\
& \text { environments! }
\end{aligned}\right.
$$

... so in a low-oxygen environment, you may produce less carbon dioxide than expected!
(2) TRANSFER AND OTHER LOSSES

- When isolating a product, losses may occur in the process. Example: filtering

- Reactions may reach an equilibrium between prodcuts and reactants. We'll talk more about this in CHM 111. The net results is that the reaction will appear to stop before all reactants have been consumed!
- All of these factors cause a chemical reaction to produce LESS product than calculated. For many reactions, this difference isn't significant. But for others, we need to report the PERCENT YIELD.

$$
\begin{gathered}
\text { PERCENT } \\
\text { YIELD }
\end{gathered}=\frac{\text { ACTUAL YIELD }}{\text { THEORETICAL YIELD }} \times 100 \%
$$

[^0]120
22.4 grams of benzene are reacted with excess nitric acid. If 31.6 grams of nitrobenzene are collected from the reaction, what is the percent yield?
Calculate the THEORETICAL YIELD of nitrobenzene that could be made from 22.4 grams of benzene (the starting material!)

$$
\text { (1) } 78.114 \mathrm{gC}_{6} \mathrm{H}_{6}=\mathrm{mul} \mathrm{C}_{6} \mathrm{H}_{6} \text { (2) } \mathrm{mol} \mathrm{C}_{6} \mathrm{H}_{6}=\mathrm{mol} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NO}_{2}
$$

(3) $123.11 \mathrm{Ig}\left(6 \mathrm{H}_{5} \mathrm{NO}_{2}=\mathrm{mol}^{2}\right) \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NO}_{2}$

$$
22.4 \mathrm{~g} \mathrm{C}_{6} \mathrm{H}_{6} \times \frac{\mathrm{mol} \mathrm{C}_{6} \mathrm{H}_{6}}{78.11 \mathrm{Hg} \mathrm{C}_{6}} \times \frac{\mathrm{molC}_{6} \mathrm{H}_{5} \mathrm{NO}_{2}}{\mathrm{~mol}_{6} \mathrm{H}_{6}} \times \frac{123.11 \mathrm{~g} \mathrm{~g}_{6} \mathrm{H}_{5} \mathrm{NO}_{2}}{\mathrm{mul}_{6}{\mathrm{H} N \mathrm{NO}_{2}}_{\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NO}_{2}}^{35.3 \mathrm{~g}} \mathrm{~m}^{3}}=\frac{1}{3}
$$

$$
\% \text { yeld }=\frac{\text { actual }}{\text { theor. }} \times 100=\frac{31.6 \mathrm{~g}}{3 \mathrm{s.3g}} \times 100=89.50 \%
$$

(theoretical)

$$
\begin{aligned}
& 78.114 \mathrm{~g} / \mathrm{mul} \quad 123.111 \mathrm{~g} / \mathrm{mul}<- \text { Formula weights } \\
& \mathrm{C}_{6} \mathrm{H}_{6}+\mathrm{HNO}_{3} \longrightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NO}_{2}+\mathrm{H}_{2} \mathrm{O} \\
& \text { benzene nitric acid nitrobenzene }
\end{aligned}
$$

ENERGY

- thermodynamics: the study of energy transfer

Conservation of energy: Energy may change form, but the overall amount of energy remains constant. "first law of thermodynamics"

- ... but what IS energy?
- energy is the ability to do "work"
motion of matter

Kinds of energy?

- Kinetic energy: energy of matter in motion $E_{K}=\frac{1}{2} m v^{2}$
- Potential energy: energy of matter that is being acted on by a field of force (like gravity)

When the ball falls, its potential energy is converted to kinetic!

- What sort of energy concerns chemists? Energy that is absorbed or released during chemical reactions.
- Energy can be stored in chemicals ... molecules and atoms.

INTERNAL ENERGY: "U"

\uparrowrelated to the kinetic and potential energy of atoms, molecules, and their component parts.

- We measure energy transfer ... which is called HEAT. (HEAT is the flow of energy from an area of higher temperature to an area of lower temperature)

Q:heat
SYSTEM: the object or material under study
SURROUNDINGS: everything else

Type of process	Energy is ...	Sign of Q	Temp of SURROUNDINGS ...
ENDOTHERMIC	transferred from SURROUNDINGS to SYSTEM	+	decreases
EXOTHERMIC	transferred from SYSTEM to SURROUNDINGS	-	increases

123

$$
\mathrm{HCl}(\mathrm{aq})+\mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{NaCl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\ell)
$$

This reaction is EXOTHERMIC. Energy is transferred from the reactants and products (the SYSTEM) to the water in the flask, the flask, etc. (the SURROUNDINGS)

$$
3 \mathrm{MNaOH}, 25^{\circ} \mathrm{C}
$$

$$
\xrightarrow{\sim} \mathrm{Ba}(\mathrm{OH})_{2} \cdot 8 \mathrm{H}_{2} \mathrm{O}(\mathrm{~s})+2 \mathrm{NH}_{4} \mathrm{NO}_{3}(\mathrm{~s}) \longrightarrow 2 \mathrm{NH}_{3}(\mathrm{aq})+10 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})
$$

$$
\text { if } \mathrm{NH}_{4} \mathrm{NO}_{3}, 25^{\circ} \mathrm{C}
$$

This reaction is ENDOTHERMIC. Energy is being transferred from the room/flask/etc. (the SURROUNDINGS) to the reaction itself (the SYSTEM).

$$
\mathrm{BaOH})_{2} \cdot 8 \mathrm{H}_{2} \mathrm{O}, 28^{\circ} \mathrm{C} \mathrm{Ba}^{\mathrm{C}}\left(\mathrm{NO}_{z}\right)_{2}(\mathrm{aq}), \mathrm{CO}{ }^{\circ} \mathrm{C}
$$

ENERGY UNITS

- calorie (cal): the amount of energy required to change the temperature of one gram of water by one degree Celsius (or Kelvin)

- Calories in food? The "Calorie" that is given on American food labels is actually the kilocalorie (kcal)
- Joule (J): SI unit for energy. It's defined based on the equation for kinetic energy.

- the Joule is a small unit. For most reactions at lab scale, we'll use kilojoules (kJ).
- a measured quantity. The amount of energy required to change the temperature of one gram of a particular substance by one degree Celsius.
- Specific heat information for common substances is readily available. For water,

$$
\begin{aligned}
& 4.184 \frac{\mathrm{~J}}{\mathrm{gOC}^{\circ} \mathrm{or}} 1.000 \frac{\mathrm{cal}}{9^{\circ} \mathrm{C}} \\
& Q=m \times S \times \Delta T \\
& \begin{array}{l}
m=\text { mass } \\
s=\text { specific heat }
\end{array} \\
& \begin{array}{l}
\text { This is ALWAYS final temp minus } \\
\text { initial temp! }
\end{array}
\end{aligned}
$$

- For objects, like reaction vessels, you might know the HEAT CAPACITY, which is the amount of energy required to change the temperature of an object by one degree Celsius

$$
\begin{gathered}
\text { Units: } \mathrm{J} / \mathrm{o}^{\circ} \mathrm{C} \text { or } \mathrm{cal} / \mathrm{o}^{\circ} \mathrm{C} \\
Q=C \times \triangle \\
c=\text { heat capacity }
\end{gathered}
$$

- the measurement of heat. But how do we measure heat?

... what is Q for this reaction?
Assuming that no heat is lost from the water to the surrounding air,

... if we knew something about the WATER, we could use that to find the heat of the REACTION!

We can look up the water's SPECIFIC HEAT and use it to relate the temperature change of the water to Q.

To report the energy change in this reaction to others, we should express it in terms of heat transfer per mole of something. A different amount of reactant would have a different Q

$$
Q_{r \times n}=\frac{Q_{r}}{\text { mules } A}=\frac{-5439.2 \mathrm{~J}}{0.20 \mathrm{mulA}}=-27000 \frac{\mathrm{~J}}{\mathrm{mulA}}=-27 \frac{\mathrm{~kJ}}{\mathrm{mul}}
$$

This kind of number is usally called a "heat of reaction" ...

One problem ...
PATH. The amount of energy required for a process depends on how the process is carried out.

Example: Driving from Florence to Columbia. How much energy is required? (gas) Jeep Cherokee vs Toyota Prius. The Jeep will use much more fuel than the Prius even though they start and end from exactly the same place. So the fuel usage is what we call a PATH FUNCTION, while the location is a STATE FUNCTION.

- so the heat of reaction depends on how the reaction is done.
- we need (for reporting) some kind of standard condition. At constant pressure, we can define a state function called ENTHALPY (H)

$$
\begin{aligned}
& H=U+P V \\
& \Delta H=Q_{\text {constant pressure }}
\end{aligned}
$$

... we record the "enthalpy change of reaction" in our data books.

SINCE the enthalpy change does NOT depend on path, this means that we can use standard values for enthalpy to predict the heat change in reactions that we have not tested in a calorimeter.

[^0]: ... the percent yield of a reaction can never be greater than 100% due to conservation of mass! If you determine that a percent yield is greater than 100%, then you've made a mistake somewhere - either in a calculation or in the experiment itself!

