A few examples of precipitation and acid/base: charge in exchange reactions!

We do not form either an insoluble ionic compound or a molecule like water. There is no driving force here, therefore NO REACTION.

- Precipitation reactions involve ions pairing up, but the ions themselves are not formed in precipitation reactions. Precipitation reactions (and quite a few others) start with pre-existing ions.
... but ions have to be produced somehow - through a chemistry that involves the transfer of electrons.
- OXIDATION/REDUCTION chemistry ("REDOX" chemistry) involves transfer of electrons and can make ions.

These are called "half-reactions"

- oxidation and reduction always occur together. In other words, we can't just make free electrons using oxidation without giving them somewhere to go.
- Many of the types of reactions that you might have heard of before are actually redox reactions!
- SINGLE REPLACEMENT reactions

$$
\begin{aligned}
& \mathrm{Cu}(\mathrm{~s})+2 \mathrm{AgNO}_{3}(\mathrm{aq}) \rightarrow \mathrm{Cu}_{\mathrm{q}}\left(\mathrm{NO}_{3}\right)_{2}\left(\mathrm{aq}_{\mathrm{q}}\right)+2 \mathrm{Ag}(\mathrm{~s}) \\
& \mathrm{Cu} \rightarrow \mathrm{Cu}^{2+}+2 e^{-} \text {oxidation } \\
& 2 A_{y}^{+}+2 e^{-} \rightarrow 2 A_{y}(\delta) \text { reduction } \\
& \text { net ionic } \rightarrow \mathrm{Cu}(s)+2 \mathrm{~A}_{g}+\left(u_{q}\right) \rightarrow \mathrm{Cu}^{2+}\left(\mathrm{a}_{q}\right)+2 \mathrm{Ag}_{g}(\mathrm{~s})
\end{aligned}
$$

- COMBUSTION reactions (burning)

$$
\begin{array}{r}
2 \mathrm{Mg}_{g}(s)+\mathrm{O}_{2}(g) \rightarrow 2 \mathrm{~m}_{g} \mathrm{O}(s) \\
2 \mathrm{~m}_{g}(s) \rightarrow 2 \mathrm{~m}_{y}^{2+}+4 e^{-} \text {oxidation } \\
\mathrm{O}_{2}(y)+4 e^{-} \rightarrow 20^{2-} \text { reduction }
\end{array}
$$

- "Oxidation" is loss of electrons, but an OXIDIZING AGENT is something that causes ANOTHER substance to lose electrons. An oxidizing agent is itself reduced during a redox reaction.
- "Reduction" is gain of electrons, but a REDUCING AGENT is something that causes ANOTHER substace to gain electrons. Reducing agents are themselves oxidized during a redox reaction.

* Strong oxidizers (oxidizing agents) can cause spontaneous fires if placed into contact with combustibles (safety issue!).
* Reactive metals tend to be REDUCING AGENTS, while oxygen-rich ions like NITRATES tend to be OXIDIZING AGENTS. HALOGENS (Group VIIA) also tend to be OXIDIZING AGENTS

CHEMICAL CALCULATIONS - RELATING MASS AND ATOMS

Chemical equations are written
and balanced in terms of ATOMS and MOLECULES

- While chemical equations are written in terms of ATOMS and MOLECULES, that's NOT how we often measure substances in lab!
- measurements are usually MASS (and sometimes VOLUME), NOT number of atoms or molecules!

CHEMICAL CALCULATIONS CONTINUED: REACTIONS

- Chemical reactions proceed on an ATOMIC basis, NOT a mass basis!
- To calculate with chemical reactions (ie. use chemical equations), we need everything in terms of ATOMS ... which means MOLES of atoms

$$
2 A\left|(s)+3 B r_{2}(l) \longrightarrow 2 A\right| B r_{3}(s)
$$

coefficients are in terms of atoms and molecules!

$$
\frac{2 \text { atoms } A \mid}{2 \text { mol } A \mid}=3 \text { molecules } B r_{2}=2 \text { mol } B r_{r_{2}}=2 \text { mulaunits } A \mid B B_{3}
$$

- To do chemical calculations, we need to:
- Relate the amount of substance we know (mass or volume) to a number of moles
- Relate the moles of one substance to the moles of another using the equation
- Convert the moles of the new substance to mass or volume as desired

$$
2 \mathrm{~A}\left|(\mathrm{~s})+3 \mathrm{Br}_{2}(l) \longrightarrow 2 \mathrm{~A}\right| B r_{3}(\mathrm{~s})
$$

* Given that we have 25.0 g of liquid bromine, how many grams of aluminum would we need to react away all of the bromine?
(1) Convert grams of bromine to moles: Need formula weight

$$
\begin{gathered}
159.80 \mathrm{~g} r_{2}=\mathrm{mol} \mathrm{Br} 2 \\
25.0 \mathrm{~g} \mathrm{Br}_{2} \times \frac{\mathrm{mol} \mathrm{Br}_{2}}{159.80 \mathrm{gr}} \mathrm{~g}
\end{gathered}=0.1564 \mathrm{~mol} \mathrm{Br}_{2}
$$

(2) Use the chemical equation to relate moles of bromine to moles of aluminum

$$
\begin{aligned}
2 \mathrm{~mol} A 1 & =3 \mathrm{~mol} B r_{2} \\
0.15645 \mathrm{~mol} \mathrm{Br}_{2} & \times \frac{2 \mathrm{~mol} A 1}{3 \mathrm{~mol} B r_{2}}=0.1043 \mathrm{~mol} \mathrm{Al}
\end{aligned}
$$

(3) Convert moles aluminum to mass: Need formula weight $\mathrm{Al}: 26.98$

$$
\begin{array}{rl}
26.98 \mathrm{~g} \mathrm{Al} & =\operatorname{mol} \mathrm{Al} \\
0.10430 \mathrm{~mol} \mathrm{Al} \times & 26.98 \mathrm{~g} \mathrm{Al} \\
\mathrm{~mol} \mathrm{Al} & 2.81 \mathrm{~g} \mathrm{Al}
\end{array}
$$

You can combine all three steps on one line if you like!

$$
\begin{aligned}
& \text { (1) } 154.80 \mathrm{~g} \mathrm{Br}_{2}=\mathrm{mol} \mathrm{Br}_{2} \text { (2) } 2 \mathrm{~mol} A 1=3 \mathrm{~mol} \mathrm{Br}_{2} \text { (3) } 26.98 \mathrm{gAl}=\mathrm{mol} A 1 \\
& 25.0 \mathrm{gBr} \times \frac{\mathrm{mol} \mathrm{Br}_{2}}{159.80 \mathrm{gr}_{2}} \times \frac{2 \mathrm{~mol} \mathrm{Al}}{3 \mathrm{~mol} \mathrm{Br}} \times \frac{26.98 \mathrm{gAl}}{\mathrm{~mol} \mathrm{Al}}=2.81 \mathrm{~g} \mathrm{Al}
\end{aligned}
$$

Things we can do:

If we have \ldots	\ldots and we need \ldots	Use \ldots
MASS	MOLES	FORMULA WEIGHT
SOLUTION	MOLES	MOLAR VOLUME
CONCETRATION		
MOLES OF A		MOLARITY)
	MOLES OF B	BALANCED

${ }_{112}$ Example:
How many milliliters of 6.00 M hydrochloric acid is needed to completely react with 25.0 g of sodium carbonate?

$$
2 \mathrm{HCl}(\mathrm{aq})+\mathrm{Na}_{2} \mathrm{CO}_{3}(s) \longrightarrow \mathrm{H}_{2} \mathrm{O}(l)+\left(\mathrm{O}_{2}(g)+2 \mathrm{NaC}\right)(\mathrm{aq})
$$

$\overline{1-\text { Convert } 25.0}$ grams of sodium carbonate to moles. Use FORMUAL WEIGHT.
2 - Convert moles sodium carbonate to moles HCI. Use CHEMICAL EQUATION.
3 - Convert moles HCl to volume HCl solution. Use MOLARITY (6.00 M).

$$
\begin{aligned}
& \text { (1) } \mathrm{Na}_{2} \mathrm{CO}_{3}: \mathrm{Na}-2 \times 22.99 \\
& \text { C }-1 \times 12.01 \\
& 0-\frac{3 \times 16.00}{10 \mathrm{~S} .99 \mathrm{~g} \mathrm{Na}_{2} \mathrm{CO}_{3}}=\mathrm{mol}_{0} 1 \mathrm{Na}_{2} \mathrm{CO}_{3} \\
& 25.0{ }_{9} \mathrm{Na}_{2} \mathrm{CO}_{3} \times \frac{\mathrm{mulNu}_{2} \mathrm{CO}_{3}}{10 \mathrm{~S} .99 \mathrm{~g} \mathrm{Na}_{2}\left(\mathrm{O}_{3}\right.}=0.2358713086 \mathrm{~mol} \mathrm{Nn}_{2} \mathrm{CO}_{3} \\
& \text { (2) } 2 \mathrm{molHCl}=\mathrm{mol} \mathrm{~N} \mathrm{Na}_{2} \mathrm{CO}_{3} \\
& 0.2358713086 \mathrm{~mol} \mathrm{Na}
\end{aligned}
$$

${ }_{11}$ Example:
How many milliliters of 6.00 M hydrochloric acid is needed to completely react with 25.0 g of sodium carbonate?

$$
2 \mathrm{HCl}(\mathrm{aq})+\mathrm{Na}_{2} \mathrm{CO}_{3}(s) \longrightarrow \mathrm{H}_{2} \mathrm{O}(l)+\left(\mathrm{O}_{2}(g)+2 \mathrm{NaC}\right)(\mathrm{aq})
$$

1 - Convert 25.0 grams of sodium carbonate to moles. Use FORMUAL WEIGHT.
2 - Convert moles sodium carbonate to moles HCI . Use CHEMICAL EQUATION.
3 - Convert moles HCl to volume HCl solution. Use MOLARITY (6.00 M).
(3) $6.00 \mathrm{~mol} \mathrm{HCl}=\mathrm{C}$

$$
0.4717426172 \mathrm{~mol} \mathrm{HCl} \times \frac{L}{6.00 \mathrm{molHCl}}=0.0786237695 \mathrm{~L} 4 C 1 \text { solution }
$$

We have the volume (0.0786 L), but we need to convert to mL to fully finish the problem.

$$
\begin{aligned}
& m L=10^{-3} \mathrm{~L} \\
& 0.0786237695 \mathrm{~L} \times \frac{\mathrm{mL}}{10^{-3} \mathrm{~L}}=78.6 \mathrm{~mL} \text { of } 6.00 \mathrm{~m} \mathrm{HCl}
\end{aligned}
$$

114

$$
4 \underset{\substack{\text { propylene }}}{42.081 \text { gimul }} \mathrm{C}_{3}+6 \mathrm{NO} \longrightarrow 4{\underset{c}{\text { acrylonitrile }}}_{\mathrm{S} 3.064}^{\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{mul}}+6 \mathrm{H}_{2} \mathrm{O}+\mathrm{N}_{2}
$$

Calculate how many grams of acrylonitrile could be obtained from 651 g of propylene, assuming there is excess NO present.

1 - Convert 651 grams of propylene to moles. Use FORMULA WEIGHT.
2 - Convert moles propylene to moles acrylonitrile. Use CHEMICAL EQUATION.
3 - Convert moles acrylonitrile to grams acrylonitrile. Use FORMULA WEIGHT.
(1) $42.081 \mathrm{~g} \mathrm{C}_{3} \mathrm{H}_{6}=\mathrm{mol} \mathrm{C}_{3} \mathrm{H}_{6}$ (2) $4 \mathrm{~mol} \mathrm{C} 3 \mathrm{H}_{6}=4 \mathrm{molC} \mathrm{C}_{3} \mathrm{~N}$
(3) $\mathrm{S}^{3} .064 \mathrm{y} \mathrm{C}_{3} \mathrm{H}_{3} \mathrm{~N}=\mathrm{mol} \mathrm{C}_{3} \mathrm{H}_{3} \mathrm{~N}$

$$
6 \mathrm{SigC}_{3} \mathrm{H}_{6} \times \frac{\mathrm{mol}_{3} \mathrm{H}_{6}}{42.08 \mathrm{ggCl}_{3} \mathrm{H}_{6}} \times \frac{4 \mathrm{mul} \mathrm{C}_{3} \mathrm{H}_{3} \mathrm{~N}}{4 \mathrm{mul}_{3} \mathrm{H}_{6}} \times \frac{53.064 \mathrm{~g}_{3} \mathrm{H}_{3} \mathrm{~N}}{\mathrm{~mol}_{3} \mathrm{H}_{3} \mathrm{~N}}=821 \mathrm{~g}_{3} \mathrm{C}_{3} \mathrm{~N}
$$

