

Find the formulas of:

(1) an ionic compound containing AI and Br
(2) an ionic compound containing Mg and O
(3) an ionic compound containing S and K

2+ _1 -

Find the formula of:

* an ionic compound containing AI and Br

Find the formula of: * an ionic compound containing Mg and O

 $M_{q}^{2t} O^{2-} \rightarrow M_{q}O$

Reminder: When pairing ions to make an ionic _ compound, alwaly put the cation (+) first in the formula you write! ----->

IA	1				TRA	ansi	TION	I ME	TALI	ONS	5					Ň	VIIIA
Н	IIA										-	IIIA	IVA	VA	VIA	VIIA	He
Li	Be											В	С	Ν	0	F	Ne
Na	Mg	IIB	IVB	VB	VIB	VIIB	\	VIIIB		IB	IIB	AI	Si	Ρ	S	CI	Ar
К	Ca	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr	Y	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	T	Xe
Cs	Ba	ι,ά	Hf	Ta	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt	*"ir	ner"	trar	nsitic	n m	etals	s go	here)

The transition metals always form CATIONS!

However, many transition metals are capable of forming SEVERAL DIFFERENT CATIONS!

Example: Iron (Fe) forms two cations, depending on the situation: Fe²⁺ or Fe³⁺

TRANSITION METAL CATIONS

- So how do you know which cation you're dealing with? For now, you'll have to be told

- Either the chemical formula of an ionic compound or the name of an ionic compound can tell you what charge is on the transition metal cation.

+?

* The iron in this compound has a charge of +3. We call this kind of iron ion "iron(III) ion" ... pronounced "iron three ion". The compound is called "iron(III) nitride".

* The iron in this compound has a charge of +2. We call this kind of iron ion "iron(II) ion" ... pronounced "iron two ion". The compound is called "iron(II) nitride".

POLYATOMIC IONS

- Some MOLECULES can gain or lose electrons to form CATIONS or ANIONS. These are called POLYATOMIC IONS

- Polyatomic ions form ionic compounds in the same way that single-element ions do.

CARBONATE ION Example: 34 Use parenthesis when an *Cumpare ionic compound's formula 40 contains more than one of A134 a polyatomic ion. Alzoz from A13+ 02-

See the web site or Openstax page 100 - table 2.5 for a list of common polyatomic ions!

NAMES OF IONS

- To properly discuss ions and ionic compounds, we have to know how to name them! CATIONS

3 kinds:

 $\widehat{1}$ Main group cations (metals that take only one charge when forming ions)

- The element's name is the same as the ion's name!

Mg²⁺: "magnesium ion"

/ Transition metal cations (from metals that can form several cations)

- The CHARGE of the cation must be given. Use a ROMAN NUMERAL after the element name to indicate charge!

Fe : "iron(II) ion" Cu^{\dagger} : "copper(I) ion " Fe^{3†}: "Iron(III) ion"

(3)

Polyatomic cations

- Memorize list. $H_{\mathcal{H}}$: "ammonium ion" ANIONS 2 kinds Main-group nonmetals - Use the STEM NAME of the element, then add "-ide" suffix N³⁻: "nitride" ion P³⁻: "phosphide ion" S²: Sulfide Iun O^{2-} : "oxide ion" F : "fluoride ion" Polyatomic ions - Memorize list. (see web site)

 $C_2 H_3 O_2$: "acetate ion" SO_4^2 : "sulfate ion"

NO3 : "nitrate ion"

NO₂ : "nitrite ion"

* Polyatomic ions ending in "-ate" and "-ite" suffixes always contain oxygen! "-ate" ions have more oxygen atoms than their "-ite" counterparts.

NAMING IONIC COMPOUNDS

- The name of the compound is based on the name of the ions in the compound
- Cation first, anion second

Examples:

 $M_{G}(OH)_{2}$

magnesium hydroxide

sodium sulfide

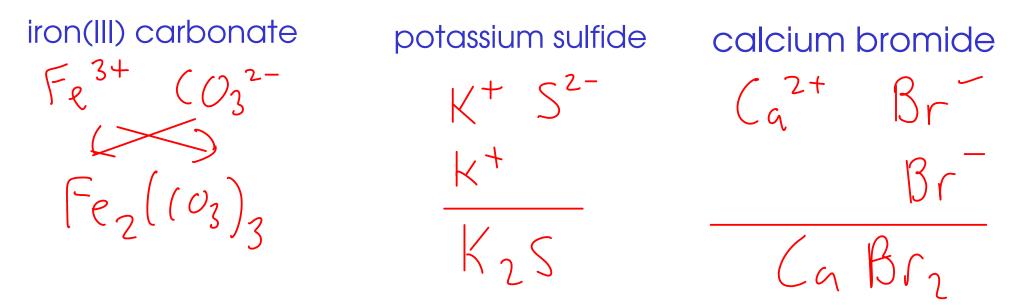
barium phosphate

 $\frac{Fe^{3t}}{+6}$ iron(III) oxide

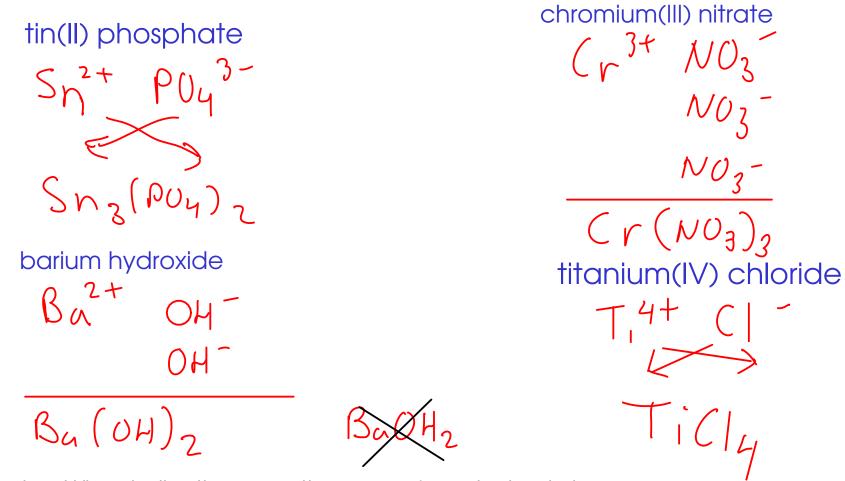
CuO + 2 - 2copper(II) oxide

 $\begin{array}{c|c}
\hline (u^2) \\
\hline (u^2) \\
\hline (v^4) \\
\hline (v^4) \\
\hline (v^4) \\
\hline (v^4) \\
\hline (v^2) \\
\hline (v^4) \\
\hline (v^4$

* Remember to include the Roman numeral for CHARGE when you're writing transition metal compound names!


(See Openstax p 100 for a chart of polyatomic ions)

- The name of an ionic compound is made of the names of the CATION and ANION in the compound.


- To get the FORMULA, you must figure out the SMALLEST RATIO of cation to anion that makes the charges balance out

Examples:

67

DETERMINING IONIC FORMULAS

Reminder: When indicating more than one of a polyatomic ion, enclose the ion's formula in parenthesis before adding the new subscript. Be particularly careful with HYDROXIDE, CYANIDE, and HYPOCHLORITE ions!

HYDRATES

69

- many ionic compounds are formed by crystallizing the compound from water. Sometimes, this causes water molecules to become part of the crystal structure.

- This water is present in a definite ratio to the ions in the compound. Can be removed by heating, but will NOT evaporate if the compound is left standing.

ex:
$$CuSOy \cdot 5H_2O$$

dot indicates that the water is weakly bound to the ionic compound

- many DESSICANTS are hydrates that have had their water molecules driven off. They will slowly reabsorb water from the air (and keep the environment in a dessicator at a low humidity)

- Hydrates are named using the name of the ionic compound, and a Greek prefix in front of the word "hydrate" to indicate how many water molecules are associated

MOLECULAR COMPOUNDS

- There are several kinds of molecular compound. We will learn to name two simple but important classes

BINARY MOLECULAR COMPOUNDS

- molecular compounds containing only two elements

- molecular compounds that dissolve in water to release H^{γ} ions
- corrosive to metals (react with many to produce hydrogen gas)
- contact hazard: can cause chemical burns to eyes and skin
- sour taste
- turn litmus indicator RED
- two kinds of acids:

Usually from Group VIIA

- contain hydrogen and one other element

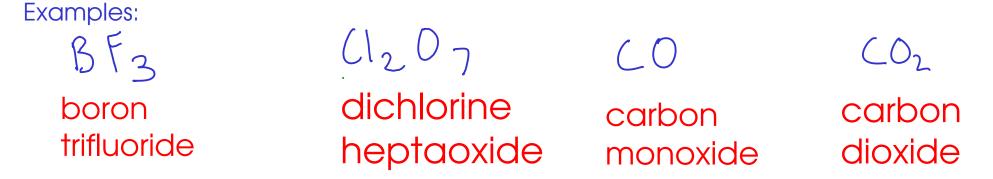
DXYACIDS

- contain hydrogen, OXYGEN, and another element

BINARY MOLECULAR COMPOUNDS

- Named based on the elements they contain, plus prefixes to indicate the number of atoms of each element in each molecule

FIRST ELEMENT


- Add a GREEK PREFIX to the name of the element.
- Omit the "MONO-" (1) prefix if there is only one atom of the first element

こ/ <u>SECOND ELEMENT</u>

- Add a GREEK PREFIX to the STEM NAME of the element
- Add the suffix "-ide" (as if you were naming an anion)
- DO NOT omit the "mono-" prefix if there is only one atom of the second element

SEE COURSE WEB SITE FOR A LIST OF GREEK PREFIXES! THESE ARE THE SAME PREFIXES USED FOR THE HYDRATES!

BINARY MOLECULAR COMPOUNDS

*Note: metalloids like boron behave chemically like nonmetals do.

carbon tetrachloride

dihydrogen monoxide

dinitrogen tetrafluoride

 N_{2} Ly

) BINARY ACIDS

- named after the element (other than hydrogen) they contain
- common binary acids include a Group VIIA element
- named: "Hydro-" + STEM NAME OF ELEMENT+ "-ic acid"

Four common binary acids HF : hydrofluoric acid * dissolves glass!

HCL , hydrochloric acid * most common binary acid!

HBr: hydrobromic acid

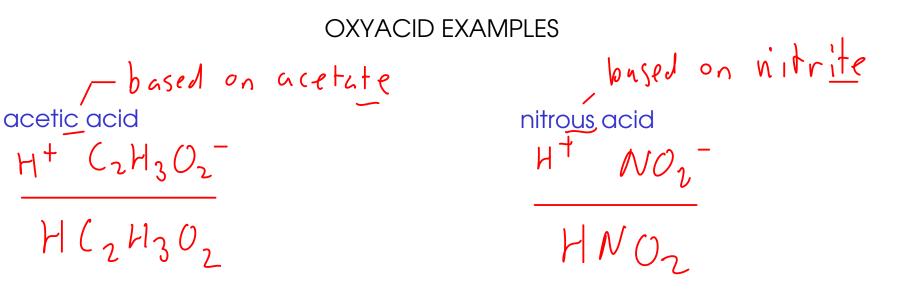
HI: hydroiodic acid

ACIDS

(i) OXYACIDS

- Easy to think about as HYDROGEN IONS combined with POLYATOMIC IONS

- These acids are not true ionic compounds, but they interact with water to PRODUCE ions!


- named based on the polyatomic ion they contain, with an ending change:

1 - ions ending in -ATE form acids ending in -IC

 \mathfrak{L} - ions ending in -ITE form acids ending in -OUS

sulfATE	phosph	ATE <u> </u>	nitrate
H2 SOY	Hz POy	H2SO3	HNO3
sulfuric acid	phosphoric acid	sulfurous acid	nitric acid

74

carbonic acid

$$H^{+}$$
 $CO_{3}^{2^{-}}$
 H^{+}

H2(03

The number of hydrogen atoms at the beginning of the formula equals the charge of the anion the acid is based on!

• •