Conversion factors in metric
In the metric system, conversion factors between units may always be made from the metric prefixes!

$$
\left.\begin{aligned}
& \text { For example, "k ,lo-" means } 10^{3} \\
& k=10^{3} \\
& \text { so } \\
& \frac{K g}{}=10^{3} \mathrm{~g} \\
& \frac{K m}{}=10^{3} \mathrm{~m} \\
& K L=10^{3} \mathrm{~L} \\
& K s=10^{3} \mathrm{~s}
\end{aligned} \right\rvert\, \begin{aligned}
& \text { Just apply the } \\
& \text { prefix to the } \\
& \text { base unit! }
\end{aligned}
$$

How do we actually USE a conversion factor?

* Similar to...

If $X=2$, then

$$
\frac{x}{2}=1
$$

1S.7S/EE-2 .. on TI-83

* This fraction equals one, so multiplying by it does not change the VALUE of the number, only its UNITS!

Convert 0.0183 kg to g $\mathrm{Kg}=10^{3} \mathrm{~g}$

$$
0.0183 \mathrm{~kg} \times \frac{10^{3} \mathrm{~g}}{1 / \mathrm{g}}=18.3 \mathrm{~g}
$$

DRAG AND DROP

- Drag the part of the factor that contains the unit you want to get rid of (cancel out) to the BOTtOM.
- Then, drag the other half of the factor to the TOP

Convert 14500 mg to $\mathrm{kg} \quad m g=10^{-3} g \quad k g=1 \mathrm{~g}^{3}$

$$
\begin{aligned}
& 14500 \mathrm{~m} / \mathrm{g} \times \frac{10^{-3} \mathrm{~g}}{\mathrm{mg}} \times \frac{k g}{10^{3} g}=0.014 \mathrm{~s} \mathrm{~kg} \\
& \text { Convert } 0.147 \mathrm{~cm}^{2} \text { to } \mathrm{m}^{2} \quad C \mathrm{~m}=10^{-2} \mathrm{~m} \\
& \begin{array}{l}
\text { When you make a conversion } \\
\text { factor from a prefix, you } \\
\text { can only apply units that } \\
\text { don't have an exponent to } \\
\text { each side! }
\end{array} \\
& 0.147 \operatorname{cin}^{x} \times \frac{10^{-2} \mathrm{~m}}{\mathrm{c} / \mathrm{m}} \times \frac{10^{-2} \mathrm{~m}}{\mathrm{~cm}}=1.47 \times 10^{-5} \mathrm{~m}^{2}
\end{aligned}
$$

When converting squared or cubed units, you will use each factor two (squared) or three (cubed) times!

$$
C m^{2}=c m \times c m \quad c m^{3}=c m \times c m \times C m
$$

8.45 kg to $\mathrm{mg} \quad \mathrm{Kg}=10^{3} \mathrm{~g} \quad \mu \mathrm{~g}=10^{-6}$

$$
8.45 \mathrm{k} / \mathrm{g} \times \frac{10^{3} g}{\mathrm{kgg}} \times \frac{\omega g}{10^{-6} g}=\frac{8450000000 \mathrm{wg}}{\left(8.45 \times 10^{9} \mathrm{mg}\right)}
$$

$$
\begin{aligned}
& 88100 \mathrm{kHz} \text { to } \mathrm{MHz} \\
& k \mathrm{~Hz}=10^{3} \mathrm{~Hz} \quad \mathrm{MHz}=10^{6} \mathrm{~Hz} \quad \mathrm{~Hz}^{8}=\mathrm{S}^{-1} \text { (frequency) } \\
& 88100 \mathrm{KHz} \times \frac{10^{3} \mathrm{~Hz}}{\mathrm{KHz}} \times \frac{\mathrm{MHz}}{10^{6} \mathrm{~Hz}}=88.1 \mathrm{MHz}
\end{aligned}
$$

17
Convert 38.47 in to m , assuming $2.54 \mathrm{~cm}=1$ in

$$
\begin{aligned}
& 2.54 \mathrm{~cm}=\mathrm{in} \quad \mathrm{~cm}=10^{-2} \mathrm{~m} \\
& 38.47 \mathrm{im} \times \frac{2.54 \mathrm{~cm}}{\mathrm{i} \mathrm{~h}} \times \frac{10^{-2} \mathrm{~m}}{\mathrm{c} / \mathrm{h}}=0.9771 \mathrm{~m}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Convert } 12.48 \mathrm{~km} \text { to in } \\
& 2.54 \mathrm{~cm}=\text { in } \quad \mathrm{cm}=10^{-2} \quad \mathrm{~m} \quad \mathrm{~m}=10^{3} \mathrm{~m} \\
& 12.48 \mathrm{k} / \mathrm{m} \times \frac{10^{3} \mathrm{~m}}{\mathrm{k} / \mathrm{m}} \times \frac{\mathrm{c} / \mathrm{m}}{10^{-2} \mathrm{~m}} \times \frac{\text { in }}{2.54 \mathrm{cyh}}=491300 \mathrm{in}
\end{aligned}
$$

Accuracy and Precision

- two related concepts that you must understand when working with measured numbers!

Accuracy

- how close a measured number is to the CORRECT (or "true") value of what you are measuring
- "Is it right?"
- checked by comparing measurements against a STANDARD (a substance or object with known properties)

Precision

- how close a SET of measured numbers are to EACH OTHER
- "Can I reproduce this?"
- checked by repeated measurements

