SALT OF A WEAK BASE

ex: $\mathrm{NH}_{4} \mathrm{Cl}$

$$
\begin{aligned}
& \mathrm{BHCl} \longrightarrow \mathrm{BH}^{+}+\mathrm{Cl}^{-} \mathrm{I}^{-} \text {The sail dissociates completely! }
\end{aligned}
$$

$$
\begin{aligned}
& \left.K_{a}=\frac{[\mathrm{B}]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}{\left[\mathrm{BH}^{+}\right]} \right\rvert\, \text {Acid ionization constant for } \mathrm{BH}^{+} \\
& \underset{1,0 \times 10^{-1 / 4}}{k_{a, B H^{t}}}=\left(K_{b, B}\right)
\end{aligned}
$$

Find the pH for salt solutions just like you would find pH for any other weak acid or weak base solutions. Only trick is to find out whether the salt is actually acidic or basic!
$0.100 \mathrm{MN} \mathrm{NH} C l \ldots$ Find the pH of the solution

$$
\begin{aligned}
& \mathrm{NH}_{4} \mathrm{LI} \rightarrow \mathrm{NH}_{4}^{+}+\mathrm{Cl}^{-} \text {is the salt acidic, basic, or neutral? Look at the } \\
& \text { IONS the salt releases when it dissolves! } \\
& \mathrm{NH}_{4}{ }^{+}: \mathrm{NH}_{4}^{+}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NH}_{3}+\mathrm{H}_{3} \mathrm{O}^{+} \text {since ammonia is a WEAK base, } \text { that means it will exit in water as } \\
& \text { molecules ... meaning the reaction } \\
& \text { we wrote can occur and ammonium } \\
& \text { ion can act as an acid. } \\
& \mathrm{Cl}^{-}: \mathrm{Cl}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{HCl}+\mathrm{OH}^{-}
\end{aligned}
$$

So the equilibrium we'll need to look at is the one with the acidic ammonium ion.

$$
\begin{aligned}
& \mathrm{NH}_{4}++\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NH}_{3}+\mathrm{H}_{3} \mathrm{O}+\left\lvert\, \mathrm{K}_{\mathrm{a}_{1} \mathrm{NH}_{4}}+=\begin{array}{l}
\text { Well need to find } \mathrm{Ka} \text { for } \\
\text { ammonium by looking at } \mathrm{Kb} \text { for } \\
\text { its conjugate, ammonia. }
\end{array}\right. \\
& K_{a}=\frac{\left[\mathrm{NH}_{3}\right]\left[\mathrm{H}_{3 \mathrm{O}^{+}}\right]}{\left[\mathrm{NH}_{4}^{+}\right]}=\text {? } \\
& K_{b, \mathrm{NH}_{3}}=1.8 \times 10^{-5} \quad(\mathrm{pA}-14) \\
& K_{a} \times K_{b}=1.0 \times 10^{-14} \\
& \mathrm{Ka}_{a, \mathrm{NH}_{4}}+=5.56 \times 10^{-10}
\end{aligned}
$$

${ }^{156} \mathrm{NH}_{4}++\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NH}_{3}+\mathrm{H}_{3} \mathrm{O}^{+} ; \mathrm{Ka}=\left[\mathrm{NH}_{3}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=5.56 \times 10^{-10}$ Set up and solve this equilibrium like any other weak acid $\left[\mathrm{NH}_{4}+\right]$
problem!

Species	[Initial]	Δ	[Equllbtium $]$
NH_{3}	0	$+X$	x
$\mathrm{H}_{3} \mathrm{O}^{+}$	0	$+x$	X
$\mathrm{NH}_{4}{ }^{+}$	0.100	$-x$	$0.100-x$

Let "x" equal the change in ammonia concentration...

$$
\begin{aligned}
& \frac{(x)(x)}{(0.100-x)}=5.56 \times 10^{-10} \\
& \frac{x^{2}}{0.100-x}=5.56 \times 10^{-10} \\
& x<0.100, \\
& 500.100-x \approx 0.100 \\
& \frac{x^{2}}{0.100}=5.56 \times 10^{-10}
\end{aligned}
$$

$x=7.45 \times 10^{-6} \mathrm{~m}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$
$p H=-\log _{10}\left(7.45 \times 10^{-6}\right)$ $p H=5.13$

For comparison, $\mathrm{pH}=1.00$ for a strong acid like HCl $\mathrm{pH}=2.17$ for 0.10 M nitrous acid $\mathrm{pH}=7.00$ for distilled water
$0.100 \mathrm{M} \mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$, Find pH

$$
\mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2} \rightarrow \mathrm{Na}^{+}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}
$$

$N_{a}{ }^{+}$? Cannot be B-L acid, as it's missing an H+ to donate. Has a positive charge, so unlikely to be a B-L base (would repel proton). Neutral.
$\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}$- Has hydrogen, but also has a negative charge. Negative charge is attractive to " protons, so a base?

$$
\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}+\mathrm{OH}^{-}
$$

This is ACETIC ACID, a WEAK acid. Since acetic acid is weak (and stable in water), we expect the acetate ion to be BASIC.

So, we need to solve the equilibrium of acetate ion reacting as a base with water.

$$
\begin{aligned}
& \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}+\mathrm{OH}^{-} \\
& K_{b}=\frac{\left[\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}\right]}=?\left\{\begin{array}{l}
\mathrm{Ka}_{1} \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}=1.7 \times 10^{-\mathrm{S}} \\
\text { Since } \mathrm{Ha}_{a} \times \mathrm{L}_{b}=\mathrm{Kaw}_{w} \\
\left(1.7 \times 10^{-5}\right) \mathrm{Kb}=\left(1.0 \times 10^{-14}\right)
\end{array}\right. \\
& R_{b}=5.88 \times 10^{-10} \\
& \text { (data from pages A-13/A-14 in Ebbing) }
\end{aligned}
$$

158

$$
\begin{aligned}
& \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}+\mathrm{OH}^{-} \\
& K_{b}=\frac{\left[\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}\right]}=5.88 \times 10^{-10}
\end{aligned}
$$

Set up an equilibrium chart and solve

Species	[Initial]	Δ	[Equilibrium]
$\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$	0	$+X$	X
OH^{-}	0	$+x$	x
$\left(2 \mathrm{H}_{3} \mathrm{O}_{2}^{-}\right.$	0.100	$-x$	$0.100-x$
$(x)(x)$	$-588 x 0^{-10}$		

Let " x " equal the change in acetic acid concentration.

$$
\begin{aligned}
& \frac{(x)(x)}{(0.100-x)}=5.88 \times 10^{-10} \\
& \left\lvert\, \begin{array}{l}
\text { Assume } x \ll 0.100 \\
\text { so } 0.100-x=0.100 \\
0.100
\end{array}\right. \\
& \frac{x^{2}}{0.88 \times 10^{-10}} \\
& x=7.6696 \times 10^{-6}=[04-]
\end{aligned}
$$

$$
\text { POM }=-\log _{10}\left(7,6696 \times 10^{-6}\right)=5,12
$$

$$
P H=14-5.12=8.88
$$

$$
(\rho H+\rho O H=14,00)
$$

For comparison:
0.100 M sodium acetate, $\mathrm{pH}=8.88$
0.100 M ammonia, $\mathrm{pH}=11.13$
0.100 M NaOH (strong base), $\mathrm{pH}=13.00$

The acetate ion is basic, but it's a very weak base!
0.100 M NaCl , Find PH

$$
\mathrm{NaCl} \rightarrow \mathrm{Na}^{+}+\mathrm{Cl}^{-}
$$

$N_{4}+$? Neither a B-L acid nor base (no protons to donate, and the positive charge hinders acceptance of a proton). Neutral.

... so chloride ion is also neutral.
In this case, the pH of the solution is controlled by water's own ionization, so the solution would be pH = 7.00.

161 POLYPROTIC ACIDS
Find pH of $\mathrm{O}_{1} 10 \mathrm{MH}_{3} \mathrm{PO}_{4}$
... what's special about phosphoric acid?
(1) $\mathrm{H}_{3} \mathrm{PO}_{4}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{2} \mathrm{PO}_{4}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}$

Phosphoric acid has THREE acidic protons!
(2) $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{HPO}_{4}^{2-}+\mathrm{H}_{3} \mathrm{O}^{+}$
(3)

$$
\left.\mathrm{HPO}_{4}^{2-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{PO}_{4}^{3-}+\mathrm{H}_{3} \mathrm{O}^{+}\right]
$$

$$
K_{a_{3}}=4.8 \times 10^{-13}
$$

The first dissociation is dominant here, and for simple calculations of phosphoric acid in water, we will simply use the first ionization and ignore the other two.

Remember: This is a weak acid. It exists in water mostly as undissociated phosphoric acid molecules.

Solve the equilibrium of phosphoric acid's FIRST proton:

$$
\begin{aligned}
& \mathrm{H}_{3} \mathrm{PO}_{4}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{2} \mathrm{PO}_{4}^{-}+\mathrm{H}_{3} \mathrm{O}^{+} ; \mathrm{Ka}=6.9 \times 10^{-3} \\
& K_{4}=\frac{\left[\mathrm{H}_{2} \mathrm{PO}_{4}^{-}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}{\left[\mathrm{H}_{3} \mathrm{PO}_{4}\right]}=6.9 \times 10^{-3}
\end{aligned}
$$

Species	[Initial]	Δ	[Equilibrium]
$\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}$	0	$+x$	x
$\mathrm{H}_{3} \mathrm{O}^{+}$	0	$+x$	x
$\mathrm{H}_{3} \mathrm{PO}_{4}$	0.10	$-x$	$0.10-x$
x^{2}			

$$
\begin{aligned}
& \frac{x^{2}}{0.10-x}=6.9 \times 10^{-3} \\
& \qquad \begin{array}{l}
\text { assume } x \ll 0.10 \\
\text { so } 0.10-x
\end{array} 0.10
\end{aligned}
$$

$$
\text { So, } p H=-\log (0.0262678511)
$$

$$
p H=1.58
$$

