WHAT KEEPS A REACTION FROM GOING BACKWARDS?

\[A + B \rightarrow C + D \]
reactants products

... what keeps the reaction on the right from occurring?

\[A + B \rightarrow C + D \]

The reverse reaction is "prevented" by an activation energy barrier - the same thing (if not the same AMOUNT of energy) that "prevents" the forward reaction!

So what really happens during a reaction? Both forward and reverse reactions occur!
- Let's look at the RATES of both the forward and reverse reactions over time.

Initially, the mixture is all A and B. As C and D are formed, the rate of the reverse reaction increases while the rate of the forward reaction decreases. Eventually, these rates become equal.

Here, the rates of the forward and reverse reactions are EQUAL. The mixture is said to be at EQUILIBRIUM.

- Initially, the mixture is all A and B. As C and D are formed, the rate of the reverse reaction increases while the rate of the forward reaction decreases. Eventually, these rates become equal.

- At EQUILIBRIUM, the concentrations of A, B, C, and D stop CHANGING. The reaction doesn’t stop, but it appears stopped to an outside observer.
Stoichiometric coefficients
- Double-headed arrow is often used to show that both the forward and reverse reactions are important.

Equilibrium
constant (concentration based)

\[
K_c = \frac{[C]^c[D]^d}{[A]^a[B]^b}
\]

- At equilibrium, the ratio above equals a constant number - the EQUILIBRIUM CONSTANT. The equilibrium constant depends on TEMPERATURE, but not on other factors.

- Not all reactants and products are included in the equilibrium constant expression!

At equilibrium, the ratio above equals a constant number - the EQUILIBRIUM CONSTANT. The equilibrium constant depends on TEMPERATURE, but not on other factors.

- Not all reactants and products are included in the equilibrium constant expression!
Since the concentration of SOLID lead(II) iodide is fixed by the crystal structure of the solid and does not change over the course of the reaction, we "fold it" into the equilibrium constant.

\[
PbI_2(s) \rightleftharpoons Pb^{2+}(aq) + 2I^-(aq)
\]

\[
K_c = \frac{[Pb^{2+}][I^-]^2}{[PbI_2]}
\]

Since water is the solvent, there's enough of it so that the reaction doesn't really change the concentration of the water itself.

Species whose CONCENTRATIONS do not change do not appear in the equilibrium constant expression. PURE SOLIDS and PURE LIQUIDS. Also, bulk SOLVENTS (like water when dealing with a reaction that takes place in water).

\[
H(C_2H_3O_2(aq) + H_2O(l) \rightleftharpoons H_3O^+(aq) + C_2H_3O_2^-(aq)
\]

\[
K_c = \frac{[H_3O^+][C_2H_3O_2^-]}{[H(C_2H_3O_2)]} = 1.7 \times 10^{-5}
\]

\[\text{[H}_2\text{O}] = ? \quad \text{1 g/mL}, \quad 1 \text{L water} = 1000 \text{g H}_2\text{O} \]

\[1000 \text{g H}_2\text{O} \times \frac{\text{mol}}{18.02 \text{g}} = 55.5 \text{mol H}_2\text{O/L} = 55.5 \text{M}\]
WHAT DOES AN EQUILIBRIUM CONSTANT TELL US?

1. Whether the final reaction mixture consists of mainly products or mainly reactants. In other words, which side of the reaction is "favored". \(\text{Extent of reaction} \)

2. Whether a reaction will proceed to the left or to the right when the reaction is not yet at equilibrium.

3. With more math, we can actually determine the final composition of an equilibrium mixture from the initial amount of reactant present WITHOUT doing an experiment!
WHICH IS FAVORED? PRODUCT OR REACTANT?

\[aA + bB \rightleftharpoons cC + dD \]

\[K_c = \frac{[C]^c[D]^d}{[A]^a[B]^b} \]

\[H_2C_2O_2(aq) + H_2O(l) \rightleftharpoons H_3O^+(aq) + C_2H_3O_2^-(aq) \]

\[K_c = \frac{[H_3O^+][C_2H_3O_2^-]}{[H_2C_2O_2]} = 1.7 \times 10^{-5} \]

To get a small value like this one, the DENOMINATOR of the equilibrium expression must be a lot larger than the NUMERATOR.

Since REACTANTS are the denominator of this fraction, this reaction favors REACTANTS at equilibrium!

- If \(K_c \) is small (<<1), then REACTANTS are favored at equilibrium.

- If \(K_c \) is large (>>1), then PRODUCTS are favored at equilibrium.
HOW TO TELL IF A REACTION IS AT EQUILIBRIUM?

- Use REACTION QUOTIENT (Q)

 \[a \text{A} + b \text{B} \rightleftharpoons c \text{C} + d \text{D} \]

 Reaction quotient = equilibrium expression using NON-EQUILIBRIUM concentrations.

 \[Q = \frac{[\text{C}]^c [\text{D}]^d}{[\text{A}]^a [\text{B}]^b} \]

- If \(Q = K_c \), then reaction is at equilibrium.
- If \(Q < K_c \), then reaction is NOT at equilibrium and proceeds to the right, forming more products.
- If \(Q > K_c \), then reaction is NOT at equilibrium and proceeds to the left, forming more reactants.

\[2 \text{NOBr}(g) \rightleftharpoons 2 \text{NO}(g) + \text{Br}_2 (g) ; \quad K_c = 3.07 \times 10^{-4} \]

\[[\text{NOBr}] = 0.0720 \text{ M}, \quad [\text{NO}] = 0.0162 \text{ M}, \quad [\text{Br}_2] = 0.0123 \text{ M} \]

Is mix at equilibrium? If not, which direction will reaction proceed?

\[Q = \frac{[\text{NO}]^2 [\text{Br}_2]}{[\text{NOBr}]^2} = \frac{[0.0162]^2 [0.0123]}{[0.0720]^2} = 6.2 \times 10^{-4} \]

\[Q = 6.2 \times 10^{-4} \nless K_c = 3.07 \times 10^{-4} \]

Since \(Q < K_c \), reaction proceeds to LEFT
- Remember, at equilibrium the reaction has not actually STOPPED. Both forward and reverse processes are still happening - just at the same rate so there's no overall concentration change.

- If you do something to the reaction mixture that changes the rates of the forward or the reverse reaction (or sometimes BOTH), the mixture will no longer be at equilibrium.

Simplest case is to add or remove a substance, changing its concentration.

\[A + B \rightleftharpoons C + D \]

\[\text{Rate, fwd} = k_f [A][B] \]

\[\text{Rate, rev} = k_r [C][D] \]

- After adding A, the rate of the forward reaction increased. As more C and D were produced by the (faster) forward reaction, the forward reaction and reverse reaction came back to equilibrium, but at a new set of conditions.

- The addition of A caused our equilibrium to SHIFT towards the RIGHT - consuming some of the extra A to form more products (C and D).
- LE CHATELEIR'S PRINCIPLE states that if an equilibrium is disturbed, it will SHIFT in such a way as to counteract the disturbance and restore equilibrium.

For concentrations:

- Increasing the concentration of a REACTANT will cause the equilibrium to shift to the RIGHT, making more products.

- Decreasing the concentration of a REACTANT will cause the equilibrium to shift to the LEFT, making more reactants.

- Increasing the concentration of a PRODUCT will cause the equilibrium to shift to the LEFT, making more reactants.

- Decreasing the concentration of a PRODUCT will cause the equilibrium to shift to the RIGHT, making more products.

This one can be used to DRIVE a reaction to produce product, even if the Kc value is NOT favorable.
- TEMPERATURE can also cause equilibrium shifts. These temperature-caused shifts can be easily illustrated with Le Chaleleir’s principle.

endothermic reaction:

\[A + B + \text{heat} \rightleftharpoons C + D \]

- Heat, here, is represented as if it’s a reactant!
- If temperature INCREASES, the equilibrium shifts to the RIGHT, making more products.
- If temperature DECREASES, the equilibrium shifts to the LEFT, making more reactants.

exothermic reactions:

\[A + B \rightleftharpoons C + D + \text{heat} \]

- In the exothermic case, heat is a product!
- If temperature INCREASES, then the equilibrium shifts to the LEFT, making more reactants.
- If temperature DECREASES, then the equilibrium shifts to the RIGHT, making more products.

- Optimization:
* For ENDOthermic reactions, run as hot as possible. You make MORE products FASTER.
* For EXOthermic reactions, you want to run the reaction cooler (for more products), but not so cool as to make the reaction slow!