- is like a regular chemical equation, except that phase labels are REQUIRED and the enthalpy for the reaction is given along with the equation.

$$
\mathrm{CH}_{3} \mathrm{COCH}_{3}(l)+4 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 3 \mathrm{CO}_{2}(9)+3 \mathrm{H}_{2} \mathrm{Ol}(\mathrm{l}) ; \mathrm{A} 4=-1800 \mathrm{~kJ}
$$

- Why are phase labels required? Because phase changes either absorb or release energy.
$\Delta H=-1800$ Lr \ldots what does this mean?

$$
\begin{aligned}
1 \mathrm{mul} \mathrm{CH}_{3} \mathrm{COCH}_{3} & =-1800 \mathrm{~kJ} \\
4 \mathrm{mul} \mathrm{O}_{2} & =-1800 \mathrm{~kJ} \\
3 \mathrm{mulCO}_{2} & =-1800 \mathrm{~kJ} \\
3 \mathrm{mul} \mathrm{H}_{2} \mathrm{O} & =-1800 \mathrm{~kJ}
\end{aligned}
$$

We treat the enthalpy change as if it's another product of the reaction!

$$
\mathrm{CH}_{3} \mathrm{COCH}(l)+4 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 3 \mathrm{CO}_{2}(g)+3 \mathrm{H}_{2} \mathrm{O}(l) ; \Delta H=-1800 \mathrm{~kJ}
$$

What would be the enthapy change when 25 g of water are produced by the reaction?
1 - Convert 25 grams of water to moles. Use FORMULA WEIGHT.
2 - Convert moles water to enthalpy change. Use THERMOCHEMICAL EQUATION

$$
\begin{align*}
& \text { (1) } \mathrm{H}_{2} \mathrm{O}: \mathrm{H}-2 \times 1,008 \\
& 0-\frac{1 \times 16,00}{18.016 \mathrm{gH}_{2} \mathrm{O}}=\mathrm{mol} \mathrm{H}_{2} \mathrm{O} \\
& \text { (2) } 3 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}=-1800 \mathrm{~kJ} \\
& 2 \mathrm{S.O} \mathrm{~g} \mathrm{H}_{2} \mathrm{O} \times \frac{\mathrm{mul} \mathrm{H}_{2} \mathrm{O}}{18.016 \mathrm{gH}_{2} \mathrm{O}} \times \frac{-1800 \mathrm{hJ}}{3 \mathrm{mul} \mathrm{H}_{2} \mathrm{O}}=-830 \mathrm{~kJ} \\
& \text { (1) } \tag{2}\\
& \text { Exothermic process. (negative sign } \\
& \text { on } Q \text { or delta H) } \\
& \text { If the reaction was run at constant } \\
& \text { pressure, delta } \mathrm{H} \text { would be equal } \\
& \text { to } Q \text {, so } Q \text { (heat) would also be } \\
& \text {-830 kt. }
\end{align*}
$$

FORMATION REACTIONS

- A reaction that forms exactly one mole of the specified substance from its elements at their STANDARD STATE at 25 C and 1 atm pressure.

$$
\begin{aligned}
\mathrm{CO}_{2}(\mathrm{~g}): & C\left({\mathrm{~s}, \text { y graphite })+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g}) ; \Delta H=-\frac{393,5 \mathrm{kj}}{}}^{\begin{array}{l}
\text { heat of formation of carbon dioxide } \Delta H_{f}^{0} \text { or } \Delta H_{f} \\
\text { or "enthalpy of formation" }
\end{array}}\right.
\end{aligned}
$$

$$
C O(g): C(s, g \text { ruphite })+\frac{1}{2} O_{2}(g) \rightarrow(O(g) ; \Delta H=-110.5 \mathrm{~kJ}
$$

you may see fractional coefficients in these formation reactions, because you MUST form exactly one mole of the product!

- The heat of formation for an element in its standard state at 25 C and 1 atm is ZERO.

$$
\Delta H_{f, O_{2}(g)=O \mathrm{KJ} / \mathrm{mol}}^{0}
$$

- What are formation reactions good for?
... finding enthalpies for more interesting reactions!
${ }^{132}$ Let's say we would like to find the enthalpy of reaction for this equation:
$2 \mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \xrightarrow{4}\left(\mathrm{O}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) ; \Delta H=\right.$?
Hess' Law: If you add two reactions to get a new reaction, their enthalpies also add.

* Enthalpy of formation data taken from Openstax Chemistry Appendix G

Hess' Law using enthalpy of formation:

$$
\begin{aligned}
& \Delta H=\sum_{0} \Delta H_{f_{1}, \text { products }}-\sum_{-393,5} \Delta H_{f_{1} \text { reachats }} \\
& 2 \mathrm{C}_{2}^{227.4} \mathrm{H}_{2}(\mathrm{~g})+\mathrm{SO}_{2}(\mathrm{~g}) \longrightarrow 4 \mathrm{CO}_{2}^{-393.5}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) ; \Delta H=\text { ? } \\
& \Delta H=[4(-393.5)+2(-241.8)]-[2(227.4)+5(0)] \\
& =-2512.4 k J
\end{aligned}
$$

See Appendix G in the Openstax textbook for enthalpy of formation data!

* Remember:
- Multiply each enthalpy by its stoichiometric coefficient from the reaction
- Enthalpy of formation of an element at its standard state is zero
- Watch phase labels. You will usually find SEVERAL enthalpies of formation for a given substance in different phases!
- For ionic substances in solution, remember that they exist as free ions, so look up the aqueous IONS!

Example problems:
FORMULA WEIGHTS in $\mathrm{g} / \mathrm{mol}$

$$
2 \mathrm{H}_{2}^{2.016}+\frac{\mathrm{g})}{32.00}+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) ; \Delta H=-484 \mathrm{~kJ}
$$

Calculate the enthalpy change for the combustion of 1000 g of hydrogen gas.
1 - Convert 1000 g of hydrogen gas to moles. Use FORMULA WEIGHT.
2 - Convert moles hydrogen gas to enthapy change. Use THERMOCHEMICAL EQUATION.

$$
\begin{aligned}
\text { (1) } 2.016 \mathrm{~g} \mathrm{H}_{2}=\mathrm{mul} \mathrm{H}_{2} \text { (2) } 2 \mathrm{mul} \mathrm{H} & =-484 \mathrm{~kJ} \\
1000 \mathrm{~g} \mathrm{H}_{2} \times \frac{\mathrm{mul} \mathrm{H}_{2}}{2.016 \mathrm{gH}_{2}} \times \frac{-484 \mathrm{~kJ}}{2 \mathrm{mul} \mathrm{H}} & =-120000 \mathrm{WJ} \text { per } \mathrm{Hg} \mathrm{H}_{2}
\end{aligned}
$$

