THERMOCHEMICAL EQUATIONS

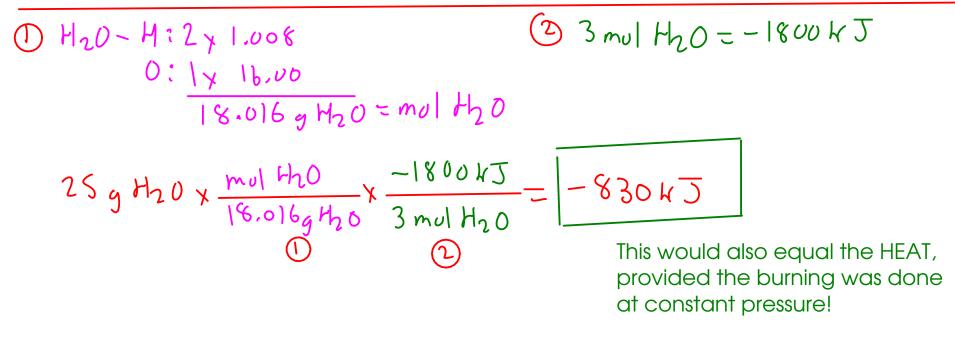
- is like a regular chemical equation, except that phase labels are REQUIRED and the enthalpy for the reaction is given along with the equation.

$$CH_3(O(H_3(l) + 4O_2(g) \rightarrow 3(O_2(g) + 3H_2O(l); AH = -1800 kJ$$

- Why are phase labels required? Because phase changes either absorb or release energy.

 $\Delta H = -1600 \text{ kJ} \dots \text{ what does this mean}?$

 $1 \mod CH_{3}COCH_{3} = -1800 \text{ kJ}$ $4 \mod O_{2} = -1800 \text{ kJ}$ $3 \mod CO_{2} = -1800 \text{ kJ}$ $3 \mod H_{2}O = -1800 \text{ kJ}$


We treat the enthalpy change as if it's another product of the reaction!

USING A THERMOCHEMICAL EQUATION

 $(H_3(O(H_3(l) + 4O_2(g) \longrightarrow 3(O_2(g) + 3H_2O(l); A = -1800 kJ)$ What would be the enthapy change when 25 g of water are produced by the reaction?

1 - Convert 25 grams water to moles. Use FORMULA WEIGHT.

2 - Convert moles water to enthalpy change. Use THERMOCHEMICAL EQUATION.

(This is an EXOTHERMIC process - since delta H is negative. Not really surprising, since this is the reaction for the burning of acetone!)

FORMATION REACTIONS

- A reaction that forms exactly one mole of the specified substance from its elements at their STANDARD STATE at 25C and 1 atm pressure.

$$(O_{2}(g): ((s, graphite) + O_{2}(g) \rightarrow (O_{2}(g)); AH = -\frac{393.5 \text{ kJ}}{(s, graphite)} + O_{2}(g) \rightarrow (O_{2}(g)); AH = -\frac{393.5 \text{ kJ}}{(s, graphite)}$$

$$(O_{2}(g): ((s, graphite) + O_{2}(g) \rightarrow (O_{2}(g)); AH = -\frac{190.5 \text{ kJ}}{(s, graphite)} + \frac{1}{2}O_{2}(g) \rightarrow (O_{2}(g)); AH = -\frac{110.5 \text{ kJ}}{(s, graphite)}$$

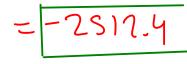
you may see fractional coefficients in these formation reactions, because you MUST form exactly one mole of the product!

- The heat of formation for an element in its standard state at 25C and 1 atm is ZERO.

 $AH_{f}^{\circ}, O_{2}(y) = O kJ/mol$

- What are formation reactions good for?

... finding enthalpies for more interesting reactions!


³² Let's say we would like to find the enthalpy of reaction for this equation: $2C_2H_2(g) + 5O_2(g) \longrightarrow 4(O_2(g) + 2H_2O(g); \Delta H = .$						
Hess' Law: If you add two reactions to get a new reaction, their enthalpies also add.						
		2(s) +			(2H2lg)	54=227.4
	C02 1	(1)	$O_2(y)$	\longrightarrow	$(O_2(g))$	14 = - 393.5
	H20 '	$H_2(g) + \frac{1}{2}$			$H_2O(g)$	DH= -241,8
	(2)	12 (g)	-)	2(s)	+ H2(y)	04 = -227.4
	C2	$H_2(g)$)	2 ((s)	+ 42 (g)	04 = -227.4
	Сc	s_{3} + $O_{2}(y)$	\rightarrow	(0 ₂ (g)	$\Delta H = -393.5$
	· · · · /	$(5) + O_2(y)$	\rightarrow	(02 (g)	$\Delta H = -393.5$
	(<u> </u>	$5) + O_2(y)$	\rightarrow	$lo_2($)	AH = -393.5
	Ĺ ι	$\mathfrak{S} + \mathcal{O}_2(\mathfrak{g})$	\rightarrow	$lo_2(g$)	$\Delta H = -393.5$
	42	$(q) + \frac{1}{2}O_2(q)$	\rightarrow		$H_2O(g)$	Aug - 744 6
	W2 ($(a) + \frac{1}{2} O_2(a)$	\rightarrow		$H_2O(a)$	ДН: -241,8 ДН: -241,8
	12	.]). 2. 6.97				14: 241,8
$2(2H_2(g) + SO_2(g) \longrightarrow 4CO_2(g) + 2H_2O(l)$						
$\Delta H = 2(-227.4) + 4(-393.5) + 2(-241.8) = -2512.4 \text{ kJ}$						

132

* Enthalpy of formation data taken from Openstax Chemistry Appendix G

Hess' Law using enthalpy of formation:

 $\Delta H = \sum_{0} \Delta H_{F, products} - \sum_{0} \Delta H_{F, products} - \sum_{0} \Delta H_{F, products} - \frac{241.8}{-241.8}$ $2 (2 H_2(g) + 50_2(g) \longrightarrow 4 (0_2(g) + 2H_20(g); \Delta H = ?)$ $\Delta H = (4(-393.5) + 2(-241.8)) - (2(227.4) + 5(0))$

See Appendix G in the Openstax textbook for enthalpy of formation data! * Remember:

- Multiply each enthalpy by its stoichiometric coefficient from the reaction

- Enthalpy of formation of an element at its standard state is zero

- Watch phase labels. You will usually find SEVERAL enthalpies of formation for a given substance in different phases!

- For ionic substances in solution, remember that they exist as free ions, so look up the aqueous IONS! Example problems: 2,016 32.00 $2H_2(g) + O_2(g)$ $H_2(g) + O_2(g)$ $H_2(g) + O_2$

134

Calculate the enthalpy change for the combustion of 1000 g of hydrogen gas.

Convert 1000 grams of hydrogen gas to moles. Use FORMULA WEIGHT.
 Convert moles hydrogen gas to enthalpy change. Use THERMOCHEMICAL EQUATION.

1) 2.016gHz=mul Hz (2) 2mul Hz=-484KJ

1000-y H₂ x
$$\frac{m_0}{2,016gH_2}$$
 x $\frac{-484kJ}{2m_0}$ = $\frac{-120000 kJ}{12}$ per kg H₂
(1) (2)