115

$$
\begin{aligned}
& \text { IS 1.90 g/ mol } \\
& 10 \mathrm{FeSO}_{4}+2 \mathrm{KMnO}_{4}+8 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow 5 \mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}+2 \mathrm{mnSO}_{4}+\mathrm{K}_{2} \mathrm{SO}_{4} \\
&+8 \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

How many mL of 0.250 M potassium permanganate are needed to react with 3.36 g of iron(II) sulfate?
1 - Convert 3.36 grams of iron(II) sulfate to moles. Use FORMULA WEIGHT.
2 - Convert moles iron(II) sulfate to moles potassium permangenate. Use CHEMICAL EQUATION.
3 - Convert moles potassium permangenate to volume. Use MOLARITY (0.250M)
(1) $1 \mathrm{~S}_{1.9 \mathrm{~g} \mathrm{FeSO}_{4}=\mathrm{mul}^{2} \mathrm{FeSO}_{4}}$
(2) $10 \mathrm{~mol}_{\mathrm{FeSO}}^{4}$ $=2 \mathrm{~mol} \mathrm{~K} \mathrm{MnO}$
(3) $0.250 \mathrm{~mol}^{\left(\mathrm{MnO}_{4}\right.}=\mathrm{L}$

Let's convert L to mL because the problem specifically asks for mL .

$$
\begin{aligned}
& m L=10^{-3} \mathrm{C} \\
& 0.0177 \mathrm{~L} \times \frac{\mathrm{mL}}{10^{-3} \mathrm{~L}}=17.7 \mathrm{~mL} \text { of } 0.250 \mathrm{~m} \mathrm{KMnO}_{4}
\end{aligned}
$$

CONCEPT OF LIMITING REACTANT

- When does a chemical reaction STOP?

- When does this reaction stop? When burned in open air, this reaction stops when all the MAGNESIUM STRIP is gone. We say that the magnesium is LIMITING.
- This reaction is controlled by the amount of available magnesium
- At the end of a chemical reaction, the LIMITING REACTANT will be completely consumed but there may be amount of OTHER reactants remaining. We do chemical calculations in part to minimize these "leftovers".

LIMITING REACTANT CALCULATIONS

- To find the limiting reactant, calculate how much product would be produced from ALL given reactants. Whichever produces the SMALLEST amount of product is the limiting reactant, and the smallest anount of product is the actual amount of product produced.
Example: $56.08 \quad 12.01 \quad$ 64.10 <- Formula weights

$$
\xrightarrow{56.08}
$$

If you start with 100. g of each reactant, how much calcium carbide would be produced?

$$
\begin{aligned}
& \text { (1) } 56.08 \mathrm{~g} \mathrm{CaO}=\mathrm{mol} \mathrm{CaO} \\
& \text { (2) } \mathrm{mol} \mathrm{CaO}=\mathrm{mol} \mathrm{Cal} 2(3) 64,10 \mathrm{~g} \mathrm{Cal} 2=\mathrm{molCaC} 2
\end{aligned}
$$

(1) $12.01 \mathrm{gC}=\mathrm{mol} \mathrm{C}$
(2) $3 \mathrm{~mol} C=\mathrm{mol} \mathrm{CaC}_{2}$
(3) $64.10 \mathrm{gCal} 2=\operatorname{mol~} \mathrm{Cal}_{2}$

$$
100 . g C \times \frac{\mathrm{mol} \mathrm{C}}{12.01 \mathrm{gC}} \times \frac{\mathrm{mul} \mathrm{Cal}_{2}}{3 \mathrm{molC}} \times \frac{64,10 \mathrm{~g}_{\mathrm{a}} \mathrm{Cl}_{2}}{\mathrm{~mol} \mathrm{Cal2}}=178 \mathrm{~g} \mathrm{Cal} 2
$$

The reaction will stop when we reach 114 grams of calcium carbide. At that point, there is still leftover carbon, but nothing for that carbon to react with as all the GaO is gone! We say that GaO is LIMITING, and C is present IN EXCESS.

PERCENT YIELD

- Chemical reactions do not always go to completion! Things may happen that prevent the conversion of reactants to the desired/expected product!
(1) SIDE REACTIONS:

$$
\mathrm{C}+\mathrm{O}_{2} \longrightarrow \mathrm{CO}_{2} \left\lvert\, \begin{aligned}
& \text { This reaction occurs when there is a large amount } \\
& \text { of oxygen available }
\end{aligned}\right.
$$

$$
2 \mathrm{C}+\mathrm{O}_{2} \longrightarrow 2 \mathrm{CO} \left\lvert\, \begin{aligned}
& \ldots \text { while this reaction is more favorable in low-oxygen } \\
& \text { environments! }
\end{aligned}\right.
$$

... so in a low-oxygen environment, you may produce less carbon dioxide than expected!
(2) TRANSFER AND OTHER LOSSES

- When isolating a product, losses may occur in the process. Example: filtering

- Reactions may reach an equilibrium between prodcuts and reactants. We'll talk more about this in CHM 111. The net results is that the reaction will appear to stop before all reactants have been consumed!
- All of these factors cause a chemical reaction to produce LESS product than calculated. For many reactions, this difference isn't significant. But for others, we need to report the PERCENT YIELD.

$$
\begin{gathered}
\text { PERCENT } \\
\text { YIELD }
\end{gathered}=\frac{\text { ACTUAL YIELD }}{\text { THEORETICAL YIELD }} \times 100 \%
$$

[^0]120

$$
\begin{aligned}
& 78.114 \mathrm{~g} / \mathrm{mul} \quad 123.111 \mathrm{~g} / \mathrm{mul}<- \text { Formula weights } \\
& \mathrm{C}_{6} \mathrm{H}_{6}+\mathrm{HNO}_{3} \longrightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NO}_{2}+\mathrm{H}_{2} \mathrm{O} \\
& \text { benzene nitric acid nitrobenzene }
\end{aligned}
$$

22.4 grams of benzene are reacted with excess nitric acid. If 31.6 grams of nitrobenzene are collected from the reaction, what is the percent yield?
Start by calculating the amount of nitrobenzene we could make if all the 22.4 grams of benzene were reacted. This is the THEORETICAL YIELD.
(1) $78.114 \mathrm{~g}_{6} \mathrm{H}_{6}=\mathrm{mol}_{6} \mathrm{H}_{6}$ (2) $\mathrm{mol} \mathrm{C}_{6} \mathrm{H}_{6}=\mathrm{mol}_{6} \mathrm{H}_{5} \mathrm{NO}_{2}$
(3) $123.11 \mathrm{~g} \mathrm{CoH} / \mathrm{SNO}=\mathrm{mul}{ }_{6} \mathrm{H}_{5} \mathrm{NO}_{2}$

$$
\% \text { yeld }=\frac{\text { actual }}{\text { theoretical }} \times 100=\frac{31.6 \mathrm{~g}}{35.3 \mathrm{~g}} \times 100=89.5 \%
$$

[^0]: ... the percent yield of a reaction can never be greater than 100% due to conservation of mass! If you determine that a percent yield is greater than 100%, then you've made a mistake somewhere - either in a calculation or in the experiment itself!

