83
Example: How many grams of barium chloride do we need to weigh out to get 3.65 moles of barium chloride?

First, find out the FORMULA of the compound:

Second, find the FORMULA WEIGHT;

$$
\begin{aligned}
& \mathrm{Ba}^{2+} \mathrm{Cl}^{-} \\
& \mathrm{Cl}^{-} \\
& \hline
\end{aligned}
$$

$$
\frac{\mathrm{Cl}-2 \times 35.4 \mathrm{~S}}{208.2 \mathrm{~g} \mathrm{BaCl}}=\mathrm{mol} \mathrm{BaCl} 2
$$

Finally, calculate the mass via dimensional analysis.

$$
3.65 \mathrm{mul} \mathrm{BaCl}_{2} \times \frac{208.2 \mathrm{~g} \mathrm{BaCl}}{\mathrm{~mol} \mathrm{BaCl}_{2}}=\left.760^{-} \mathrm{gBaC}\right|_{2}
$$

PERCENTAGE COMPOSITION

- sometimes called "percent composition" or "percent composition by mass"
- the percentage of each element in a compound, expressed in terms of mass Example: Find the percentage composition of barium chloride.

$$
\begin{aligned}
& \mathrm{BaCl}_{2}: \mathrm{Ba}: 1 \times 137.3=137.3 \\
& \frac{\mathrm{Cl}: 2 \times 35.45}{}=\frac{70.90}{208.2 \mathrm{~g} \mathrm{BaCl}} \begin{array}{l}
\text { These numbers are the masses of each } \\
\text { element in a mole of the compound! }
\end{array} \\
& \mathrm{Ba}: \frac{137.3 \mathrm{gaCl}}{208.2 \mathrm{gatatal}} \times 100=65.95 \% \mathrm{Ba} \quad \begin{array}{l}
\text { Note: These percentages } \\
\text { should sum to } 100 \% \\
\text { within roundoff error. }
\end{array} \\
& \mathrm{Cl}: \frac{70.40 \mathrm{~g} \mathrm{Cl}}{208.2 \mathrm{gtatal}} \times 100=34.05 \% \mathrm{Cl}
\end{aligned}
$$

So far, we have

- looked at how to determine the composition by mass of a compound from a formula
- converted from MASS to MOLES (related to the number of atoms/molecules)
- converted from MOLES to MASS

Are we missing anything?

- What about SOLUTIONS, where the desired chemical is not PURE, but found DISSOLVED IN WATER?
- How do we deal with finding the moles of a desired chemical when it's in solution?

MOLAR CONCENTRATION

- unit: MOLARITY (M): moles of dissolved substance per LITER of solution
dissolved substance

$$
M=\text { molarity }=\frac{\text { moles of SOLUTE }}{\text { LSOLUTION }}
$$

6.0 M HCl solution: $\frac{6.0 \mathrm{mul} \mathrm{HCl}}{L}$

If you have $0.250 \mathrm{~L}(250 \mathrm{~mL})$ of 6.0 M HCl , how many moles of HCl do you have?
G.O mu l MCI $=L$--- this is how we express molarity as a conversion factor!

$$
0.250 \mathrm{~L} \times \frac{6.0 \mathrm{mulHCl}}{L}=1.5 \mathrm{~mol} \mathrm{HCl}
$$

If you need 0.657 moles of hydrochloric acid, how many liters of 0.0555 M HCl do you need to measure out?

$$
\begin{aligned}
& 0.05 S 5 \mathrm{~mol} \mathrm{HCl}=L \\
& 0.657 \mathrm{mul} \mathrm{HCl} \times \frac{L}{0.05 S 8 \mathrm{~mol} \mathrm{HCl}}=\frac{11,8 \mathrm{~L}}{(11800 \mathrm{ml})}
\end{aligned}
$$

What if we used 6.00 M HCl ?

$$
6.00 \mathrm{~mol} \mathrm{HCl}=L
$$

$$
0.657 \mathrm{mul} \mathrm{HCl} \times \frac{\mathrm{L}}{6.00 \mathrm{~mol} \mathrm{HCl}}=\frac{0.110 \mathrm{~L}}{(11 \overline{\mathrm{~mL}})}
$$

Example: How would we prepare 500 mL of 0.500 M sodium sulfate in water?

$$
\mathrm{Na}_{2} \mathrm{SO}_{4}: 142.05 \mathrm{~g} / \mathrm{mol}
$$

Dissolve the appropriate amount of sodium sulfate into enough water to make 500 mL of solution.


Find out the moles of sodium sulfate needed using MOLARITY. Then, change that number of moles to mass using FORMULA WEIGHT. $0.500 \mathrm{~mol} \mathrm{Na} \mathrm{H}_{2} \mathrm{SO}_{4}=L \quad \mathrm{~mL}=10^{-3}$

$$
500 . m \not \subset \times \frac{10^{-3} L}{m L} \times \frac{0.500 \mathrm{~mol} \mathrm{~N}_{4_{2}} \mathrm{SO}_{4}}{K}=0.250 \mathrm{mul} \mathrm{Na}_{2} \mathrm{SO}_{4}
$$

Now find the mass...

$$
\begin{gathered}
142.0 \mathrm{~g} \mathrm{Na}_{2} \mathrm{Su}_{4}=\mathrm{mul} \mathrm{Na}_{2} \mathrm{SO}_{4} \\
0.250 \mathrm{mul} \mathrm{Na} \mathrm{ar}_{4} \times \frac{142.05 \mathrm{~g} \mathrm{Na}_{2} \mathrm{SO}_{4}}{\mathrm{~mol} \mathrm{Na}_{2} \mathrm{SO}_{4}}=3 \mathrm{SS} \mathrm{~N} \mathrm{~N}_{2} \mathrm{SO}_{4}
\end{gathered}
$$

Add 35.5 grams sodium sulfate to 500 mL volumetric, then add water to the mark.

To prepare a solution of a given molarity, you generally have two options:

1
Weigh out the appropriate amount of solute, then dilute to the desired volume with solvent (usually water)
( "stock solution"
2. Take a previously prepared solution of known concentration and DILUTE it with solvent to form a new solution

- Use DILUTION EQUATION

The dilution equation is easy to derive with simple algebra.

$$
M \times V
$$

$$
\frac{\text { mol }}{L} \times L=\text { moles solute }
$$

... but when you dilute a solution, the number of moles of solute REMAINS CONSTANT. (After all, you're adding only SOLVENT)
$M_{1} V_{1}=M_{2} V_{2} \nwarrow$ since the number of moles of solute stays before after the same, this equality must be true! diution dilution

90

$$
\begin{aligned}
M_{1} V_{1} & =M_{2} \backslash / 2 \quad \ldots \text { the "DILUTION EQUATION" } \\
M_{1} & =\text { molarity of concentrated solution } \\
V_{1} & =\text { volume of concentrated solution } \\
M_{2} & =\text { molarity of dilute solution } \\
V_{2} & =\text { volume of dilute solution (total vow me, nut volume af }
\end{aligned}
$$

The volumes don't HAVE to be in liters, as long as you use the same volume UNIT for both volumes!
Example: Take the 0.500 M sodium sulfate we discussed in the previous example and dilute it to make 150 mL of 0.333 M solution. How many mL of the original solution will we need to dilute?

$$
\begin{aligned}
& M_{1} V_{1}=m_{2} V_{2} \\
&(0.500 \mathrm{~m}) V_{1}=(0.333 \mathrm{~m})(150 . \mathrm{mL})
\end{aligned} \quad \begin{aligned}
& M_{1}=0.500 \mathrm{~m} \\
& V_{1}=? \\
& V_{1}=99.9 \mathrm{ml} \text { of } \\
& M_{2}=0.300 \mathrm{~m} \text { stock }
\end{aligned} \quad \begin{aligned}
& V_{2}=150 . \mathrm{mL}
\end{aligned}
$$

Measure out 99.9 mL of the 0.500 M sodium sulfate solution. Then, add enough water to dilute the solution to a total volume of 150 mL .

CHEMICAL EQUATIONS

- are the "recipes" in chemistry
- show the substances going into a reaction, substances coming out of the reaction, and give other information about the process

$$
\mathrm{MgCl}_{2}(\mathrm{aq})+2 \mathrm{AgNO}_{3}(\mathrm{aq}) \stackrel{\substack{\text { "yields" } \\ \stackrel{H}{r}}}{ } 2 \mathrm{Ag}\left(1(s)+\mathrm{Mg}_{\mathrm{g}}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})\right.
$$

REACTANTS - materials that are needed fo
PRODUCTS - materials that are a reaction formed in a reaction

COEFFICIENTS - give the ratio of molecules/atoms of one substance to the others PHASE LABELS - give the physical state of a substance:
(s) -solid
(I) - liquid
(g) - gas
(aq) - aqueous. In other words, dissolved in water


