

Aluminum (Al): At atomic number 13, it is three electrons away from neon (Ne), and 5 electrons away from argon (Ar). Prediction: Aluminum will lose three electrons to form the cation Al³⁺

Bromine (Br): At atomic number 35, bromine is one electron away from krypton (Kr). Prediction: Bromine will gain one electron to form the anion Br

Strontium (Sr): At atomic number 38, strontium is two electrons away from krypton. Prediction: Strontium will lose two electrons to form the cation Sr

Find the formulas of:

- (1) an ionic compound containing AI and Br
- (2) an ionic compound containing Mg and O
- (3) an ionic compound containing S and K

_				1		-					т					
ΗI	n		1	'n	е	T	\frown	rr	Υ	ш	ш	\frown	1	\frown	T	1
		$\mathbf{\mathcal{L}}$				- 1	v			ı	H,	u	١,	$oldsymbol{-}$		٠

* an ionic compound containing Al and Br

Al3+ Br

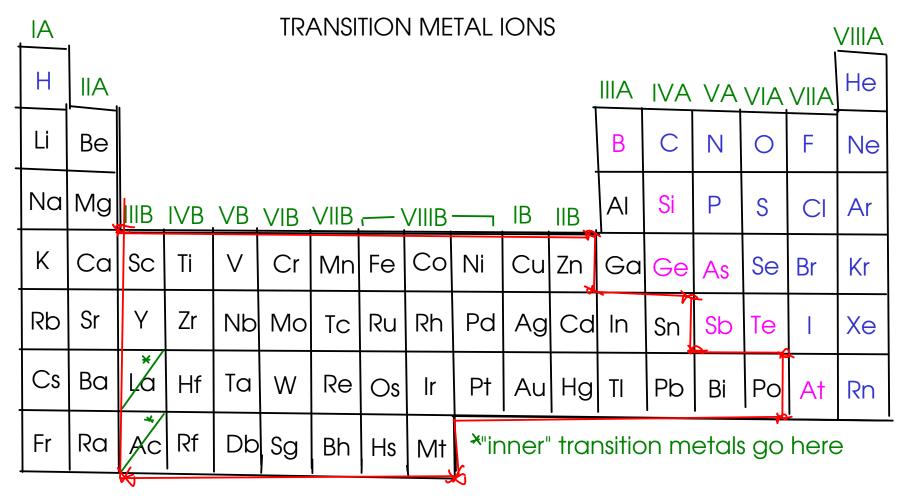
A 13+ Br Br Br

Find the formula of:

* an ionic compound containing Mg and O

 M_g^{2t} 0^{2-} \longrightarrow M_g^{0}

Find the formula of:

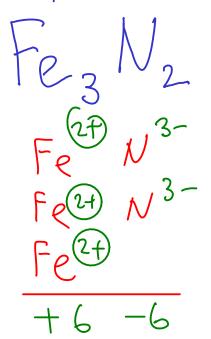

* an ionic compound containing S and K

52-

K + K

Reminder: Write ionic compound formulas with the cation (+ charge) first -----

The transition metals always form CATIONS!


^

However, many transition metals are capable of forming SEVERAL DIFFERENT CATIONS!

Example: Iron (Fe) forms two cations, depending on the situation: Fe or Fe

- So how do you know which cation you're dealing with? For now, you'll have to be told
- Either the chemical formula of an ionic compound or the name of an ionic compound can tell you what charge is on the transition metal cation.

Examples:

* The iron ions in this compound have a charge of +3 and are called "iron(III)" ions ... pronounced "iron three". The compound is called iron(III) nitride.

^{*} The iron ions in this compound have a charge of +2 and are called "iron(II)" ions ... pronounced "iron two". The compound is called iron(II) nitride.

POLYATOMIC IONS

- Some MOLECULES can gain or lose electrons to form CATIONS or ANIONS. These are called POLYATOMIC IONS
- Polyatomic ions form ionic compounds in the same way that single-element ions do.

Example: * Cumpare A1202

* Use paren'thesis when an ionic compound's formula contains more than one of a polyatomic ion.

See the web site or Openstax page 100 - table 2.5 for a list of common polyatomic ions!

NAMES OF IONS

To properly discuss ions and ionic compounds, we have to know how to name them!
CATIONS

3 kinds:

Main group cations (metals that take only one charge when forming ions)

- The element's name is the same as the ion's name!

Transition metal cations (from metals that can form several cations)

- The CHARGE of the cation must be given. Use a ROMAN NUMERAL after the element name to indicate charge!

Fe: "iron(II) ion"

3† Fe : "Iron(III) ion"

Polyatomic cations

- Memorize list.

NH 4: "ammonium ion"

ANIONS

2 kinds

Main-group nonmetals

- Use the STEM NAME of the element, then add "-ide" suffix

N³: "nitride" ion P³: "phosphide ion" S²: Sulfide Iun

O²⁻: "oxide ion" F : "fluoride ion"

Polyatomic ions

- Memorize list.(see web site)

 $C_2H_3O_2$: "acetate ion" SO_4 : "sulfate ion"

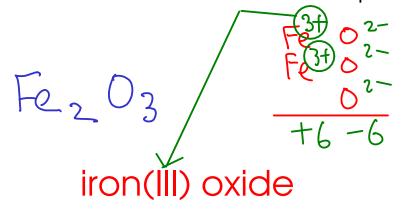
 NO_3 : "nitrate ion" SO_3^2 "sulfite ion"

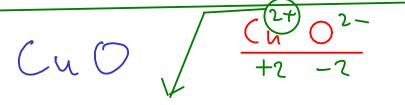
NO₂: "nitrite ion"

* Polyatomic ions ending in "-ate" and "-ite" suffixes always contain oxygen! "-ate" ions have more oxygen atoms than their "-ite" counterparts.

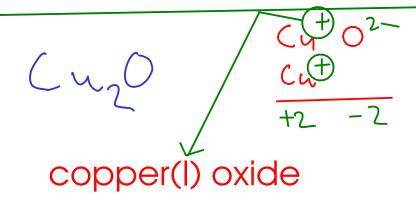
NAMING IONIC COMPOUNDS

- The name of the compound is based on the name of the ions in the compound


- Cation first, anion second


Examples:

magnesium hydroxide


sodium sulfide

barium phosphate

copper(II) oxide

^{*} Remember to include the Roman numeral for CHARGE when you're writing transition metal compound names!

(See Openstax p 100 for a chart of polyatomic ions)

- The name of an ionic compound is made of the names of the CATION and ANION in the compound.
- To get the FORMULA, you must figure out the SMALLEST RATIO of cation to anion that makes the charges balance out

Examples:

iron(III) carbonate

Fe³⁺
$$(0_3^2 - (0_3 - (0_3 - (0_3 -$$

potassium sulfide

calcium bromide