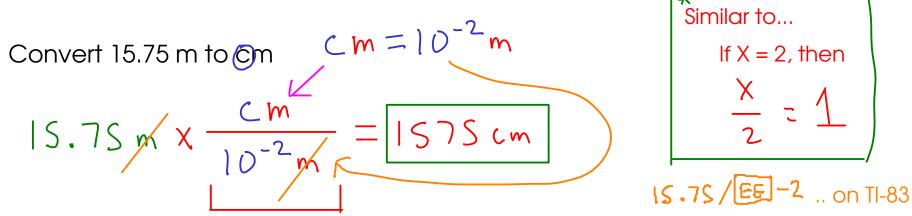
Converting from one unit to another

We will use the method of dimensional analysis, sometimes called the factor-label method. ... or, the "drag and drop" method!

Dimensional analysis uses conversion factors to change between one unit and another


What's a conversion factor? A simple equality.

Conversion factors in metric

In the metric system, conversion factors between units may always be made from the metric prefixes!

For example, "
$$K_{10}$$
" means 10^{3}
 $K = 10^{3}$
 $K_{9} = 10^{3}$
 $K_{9} = 10^{3}$
 $K_{10} = 10^{3}$

How do we actually USE a conversion factor?

* This fraction equals one, so multiplying by it does not change the VALUE of the number, only its UNITS!

Convert 0.01893 kg to g
$$Kg = 10\frac{3}{9}$$
0.01893 kg \(\text{X} \) \(\frac{10^3 9}{\frac{1}{9}} = \frac{18.93 g}{\frac{1}{9}} \)

DRAG AND DROP

- Drag the part of the factor that contains the unit you want to get rid of (cancel out) to the BOTTOM.
- Then, drag the other half of the factor to the TOP

Convert 14500 mg to kg

$$mg = 10g$$
 $Kg = 10g$

$$14500 \text{ m/g} \times \frac{10^{-3} \text{g}}{\text{m/g}} \times \frac{10^{3} \text{g}}{10^{3} \text{g}} = 0.0145 \text{ kg}$$

Convert 0.147 cm² to m²
$$(m = 10^{-2} \text{m})$$

0.147 cm² x $\frac{10^{-2} \text{m}}{\text{cm}}$ x $\frac{10^{-m}}{\text{cm}}$ = $\frac{1.47 \times 10^{-5} \text{m}^2}{0.0000 \text{ (47 m}^2)}$

When converting squared or cubed units, use each factor two (for squared) or three (for cubed) times.

$$(m^2 = (m \times cm) \quad (m^3 = (m \times cm) \times cm)$$

88100 kHz to MHz
$$= 10^{3}$$
Hz $= 5^{-1}$ (Frequency)

MHz= 10^{6} Hz

88100 KHz $\times \frac{10^{3}$ Hx $\times \frac{MHz}{10^{6}$ Hx} $= 86.1$ MHz

KHz= 10^{6} Hz

Convert 38.47 in to m, assuming 2.54 cm = $\frac{1}{2}$ in

$$2.54cm = in$$
 $cm = 10^{-2}m$

Convert 12.48 km to in