A balloon is taken from a room where the temperature is 27.0 C to a freezer where the temperature is -5.0 C . If the balloon has a volume of 3.5 L in the 27.0 C room, what is the volume of the balloon in the freezer. Assume pressure is constant.

$$
\begin{aligned}
& \frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}} \text { but } P_{1}=P_{2} ; \quad \frac{V_{1}}{T_{1}}=\frac{V_{2}}{T_{2}} \left\lvert\, \begin{array}{l}
V_{1}=3.5 \mathrm{~L} \\
T_{1}=27.0^{\circ} \mathrm{C}=300.2 \mathrm{~K} \\
\frac{(3 . S \mathrm{~L})}{(300.2 \mathrm{~K})}=\frac{V_{2}}{(268.2 \mathrm{~K})} \\
3.1 \mathrm{~L}=V_{2}
\end{array}\right. \\
& V_{2}=? \\
& T_{2}=-5.0^{\circ} \mathrm{C}=268.2 \mathrm{~K}
\end{aligned}
$$

2.25 L of nitrogen gas is trapped in a piston at 25.0 C and 1.00 atm pressure. If the piston is pushed in so that the gas's volume is 1.00 L while the temperature increases to 31.0 C , what is the pressure of the gas in the piston? $P_{1}=1.00 \mathrm{~atm}$

$$
\begin{aligned}
\frac{P_{1} V_{1}}{T_{1}} & =\frac{P_{2} V_{2}}{T_{2}} \\
\frac{(1.00 \mathrm{utm})(2.2 \mathrm{sL})}{(298.2 \mathrm{~K})} & =\frac{P_{2}(1.00 \mathrm{~L})}{(304.2 \mathrm{~K})} \\
2.30 \mathrm{~atm} & =P_{2}
\end{aligned}
$$

$$
\begin{aligned}
& U_{1}=2.25 \mathrm{~L} \\
& T_{1}=25.0^{\circ} \mathrm{C}=298.2 \mathrm{~K} \\
& P_{2}=? \\
& V_{2}=1.00 \mathrm{C} \\
& T_{2}=31.0^{\circ} \mathrm{C}=304.2 \mathrm{~K}
\end{aligned}
$$

Calculate the mass of $22650^{*} \mathrm{~L}$ of oxygen gas at 25.0 C and 1.18 atm pressure.

$$
\frac{\uparrow \mathrm{O}_{2}}{\mathrm{O}_{2}: 32 \cdot \circ \mathrm{~g}_{2}=\mathrm{mdl} \mathrm{O}_{2}}
$$

* Volume of a 10'x10'x8'

1 - Use the IDEAL GAS EQUATION (PV=nRT) to find MOLES of oxygen gas.
2 - Convert the moles of oxygen gas to mass using FORMULA WEIGHT.

$$
\begin{array}{l|ll}
P V=n R T \\
n=\frac{P V}{R T}
\end{array} \left\lvert\, \begin{array}{ll}
V=22650 \mathrm{~L} & T=25.0^{\circ} \mathrm{C}=298.2 \mathrm{~K}
\end{array}\right.
$$

(1) $n_{0_{2}}=\frac{(1.18 \mathrm{~atm})(226 \mathrm{soc})}{\left(0.08206 \frac{\mathrm{c-atm}}{\mathrm{~mol} \cdot \mathrm{k}}\right)(298.2 \mathrm{~K})}=1092.222357 \mathrm{~mol} \mathrm{O} 2$
(2)

$$
\begin{aligned}
& 32.00 \mathrm{gO}_{2}=\mathrm{mol} \mathrm{O}_{2} \\
& 1092.222357 \mathrm{~mol} \mathrm{U}_{2} \times \frac{32.00 \mathrm{go}}{\mathrm{~mol} \mathrm{o}_{2}}=35000 \mathrm{go}
\end{aligned}
$$

CHEMICAL CALCULATIONS WITH THE GAS LAWS

$$
\mathrm{H}_{2} \mathrm{SO}_{4}\left(\mathrm{u}_{q}\right)+2 \mathrm{NaHCO}_{3}(\mathrm{~s}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+2 \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{Na}_{2} \mathrm{SO}_{4}\left(\mathrm{a}_{9}\right)
$$

Given 25.0 g of sodium bicarbonate and sufficient sulfuric acid, what volume of carbon dioxide gas would be produced at 25.0 C and 0.950 atm pressure?
1 - Convert 25.0 grams sodium bicarbonate to moles. Use FORMULA WEIGHT.
2 - Convert moles sodium bicarbonate to moles carbon dioxide. Use CHEMICAL EQUATION.
3 - Convert moles carbon dioxide to volume. Use IDEAL GAS EQUATION.

$$
\begin{aligned}
& \text { (1) } 84.007 \mathrm{~g} \mathrm{NaHCO}_{3}=\mathrm{mol} \mathrm{NaHICO}_{3} \text { (2) } 2 \mathrm{~mol} \mathrm{NarlCO}=2 \mathrm{~mol} \mathrm{CO}_{2} \\
& 25.0 \mathrm{~g} \mathrm{NaHCO} \times \frac{\mathrm{mul} \mathrm{NaHCl}}{3} \frac{24.007 \mathrm{gNarlO}_{3}}{2 \mathrm{~mol} \mathrm{CO}} 2 \\
& \text { (1) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { (3) } P V=n R T \mid n=0.2975942481 \mathrm{~mol} \mathrm{CO}_{2} \quad T=25.0^{\circ} \mathrm{C}=298.2 \mathrm{~K} \\
& V=\frac{n R T}{P} \quad R=0.08206 \frac{\mathrm{~L}-\mathrm{atm}}{\mathrm{~mol}-\mathrm{K}} \quad P=0.950 \mathrm{~atm} \\
& \begin{aligned}
V=\frac{\left(0.2975942481 \mathrm{~mol}\left(\mathrm{O}_{2}\right)\left(0.08206 \frac{\mathrm{c} \text {-atm }}{\mathrm{mol} \mathrm{~K}}\right)(298.2 \mathrm{~K})\right.}{(0.950 \mathrm{~atm})} & =\begin{array}{l}
7.67 \mathrm{~L} \\
0 \mathrm{f}\left(0_{2},\right. \\
\mathrm{at} .950 \mathrm{~atm}, \\
25.0^{\circ} \mathrm{C}
\end{array}
\end{aligned}
\end{aligned}
$$

What volume would the gas in the last example problem have at STP?
STP: "Standard Temperature and Pressure" (0 C and 1 atm)
We can convert the answer to the previous problem to a volume at STP using the COMBINED GAS LAW.

$$
\begin{aligned}
& \frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}} \\
& P_{1}=0.9 \text { SOatm } \quad P_{2}=1 \text { at } \mathrm{m} \\
& V_{1}=7.67 \mathrm{~L} \quad V_{2}=\text { ? } \\
& T_{1}=298.2 \mathrm{~K} \quad T_{2}=0^{\circ} \mathrm{C}=273.2 \mathrm{~K} \\
& \frac{(0.950 \mathrm{~atm})(7.67 \mathrm{l})}{298.2 \mathrm{~K}}=\frac{(1 \mathrm{~atm}) \mathrm{V}_{2}}{273.2 \mathrm{~K}} \\
& 6.67 L \text { at } S T P=V_{2}
\end{aligned}
$$

(Alternate solution: Since wed already calculated moles of gas, plug that and the pressure and temperature from STP into $P V=n R T$...)

REAL GASES

- The empirical gas laws (including the ideal gas equation) do not always apply.
- The gas laws don't apply in situations where the assumptions made by kinetic theory are not valid.
- When would it be FALSE that the space between gas molecules is much larger than the molecules themselves?
- at high pressure, molecules would be much closer together!
- When would it be FALSE that attractive and repulsive forces would be negligible?
- at high pressure, attractions and repulsions should be stronger!
- at low temperature, attractions and repulsions have a more significant affect on the paths of molecules fast (high T) slow (low T)

-The gas laws are highly inaccurate near the point where a gas changes to liquid!
- In general, the lower the pressure and the higher the temperature, the more IDEAL a gas behaves.
van der Walls equation
- an attempt to modify PV = RT to account for several facts.
- gas molecules actually have SIZE (they take up space)
- attractive and repulsive forces

$$
\begin{aligned}
& P V=n R T] \text { Jobeosasocution } \\
& (P+\underbrace{\left.\frac{n^{2} a}{V^{2}}\right)}_{L}(V-n b)=n R T] \begin{array}{l}
\text { attempts to account for molecular size pals } \\
\text { equation }
\end{array}
\end{aligned}
$$

* "a" and "b" are experimentally determined parameters that are different for each gas. p 208
He: $a=0,0346, b=0,0238$ tiny, no special attractive forces
$\mathrm{H}_{2} \mathrm{O} \cdot a=5.537, b=0.03049$ small, but strong attractions between molecules
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}: a=12.56 \quad b=0,08710 \begin{aligned} & \text { larger, and strong attractions between } \\ & \text { molecules }\end{aligned}$
$25 \overline{0} 0 \mathrm{~L}$ of chlorine gas at 25.0 C and 1.00 atm are used to make hydrochloric acid. How many kilograms of hydrochloric acid could be produced if all the chlorine reacts?

$$
\mathrm{H}_{2}+\mathrm{Cl}_{2} \rightarrow 2 \mathrm{HCl}
$$

1 - Convert 2500 L chlorine gas to moles. Use IDEAL GAS EQUATION.
2 - Convert moles chlorine gas to moles MCI. Use CHEMICAL EQUATION
3 - Convert moles HCI to mass. Use FORMULA WEIGHT.

$$
\begin{aligned}
& \text { (1) } \\
& P V=n R T \mid P=1.00 \text { atm } \quad R=0.08206 \frac{\mathrm{Latm}}{\mathrm{~mol} \cdot \mathrm{~K}} \\
& \left.n=\frac{P V}{R T} \right\rvert\, V=2500 \mathrm{~L} \quad T=25.0^{\circ} \mathrm{C}=298.2 \mathrm{~K} \\
& n_{C_{1}}=\frac{(1.00 \mathrm{~atm})(2500 \mathrm{c})}{\left(0.08206 \frac{\mathrm{l} \text {-arm }}{\mathrm{mol} \cdot \mathrm{cr}}\right)(298.2)}=102.1646983 \mathrm{mul} \mathrm{Cl} 2
\end{aligned}
$$

$$
\begin{aligned}
& \text { (2) } \mathrm{mol} \mathrm{Cl} 2=2 \mathrm{~mol} \mathrm{HCl}(3) \mathrm{HCl}-\mathrm{H}: 1 \times 1.008 \\
& \text { (3) } \frac{1 \times 35.45}{36.458 \mathrm{~g} \mathrm{HCl}}=\mathrm{molHCl} \\
& 102.1646983 \mathrm{~mol} \mathrm{Cl} 2 \times \frac{2 \mathrm{molHCl}}{\mathrm{~mol} \mathrm{la}_{2}} \times \frac{36.458 \mathrm{~g} \mathrm{HCl}}{\mathrm{~mol} \mathrm{HCl}}=7450 \mathrm{~g} \mathrm{HCl} \\
& \mathrm{Kg}=10^{3} \mathrm{~g} \quad 7450 \mathrm{gHCl} \times \frac{\mathrm{kg}}{10^{3} \mathrm{~g}}=7.45 \mathrm{~kg} \mathrm{HCl}
\end{aligned}
$$

148

$$
2 \mathrm{HCl}+\mathrm{Na}_{2} \mathrm{CO}_{3} \rightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}+2 \mathrm{NaCl}
$$

If 48.90 mL of 0.250 M HCl solution reacts with sodium carbonate to produce 50.0 mL of carbon dioxide gas at 290.2 K , what is the pressure of the carbon dioxide gas?
1 - Convert 48.90 mL of 0.250 M HCl to moles. Use MOLARITY.
2 - Covert moles HCl to moles carbon dioxide. Use CHEMICAL EQUATION.
3 - Convert moles carbon dioxide to pressure. Use IDEAL GAS EQUATION.

$$
\begin{aligned}
& \text { (1) } 0.250 \mathrm{~mol} \mathrm{HCl}=L ; \mathrm{mL}=10^{-3} \mathrm{~L} \text { (2) } 2 \mathrm{molHCl}=\mathrm{mol} \mathrm{O}_{2} \\
& 48.90 \mathrm{~mL} \times \frac{10^{-3} L}{\mathrm{~mL}} \times \frac{0.250 \mathrm{molHCl}}{L} \times \frac{\mathrm{mul} \mathrm{CO}}{2 \mathrm{~mol} \mathrm{HCl}}=0.0061125 \mathrm{~mol} \mathrm{CO}_{2}
\end{aligned}
$$

(3)

$$
\begin{aligned}
& P V=n R T \quad \mid n=0.0061125 \mathrm{mul} \mathrm{CO} 2 \quad T=290.2 \mathrm{~K} \\
& P=\frac{n R T}{V} \left\lvert\, R=0.08206 \frac{\mathrm{~L}-\mathrm{atm}}{\mathrm{mul} \cdot \mathrm{~K}} \quad V=50.0 \mathrm{~mL}=0.0500 \mathrm{~L}\right. \\
& P=\frac{\left(0.0061125 \mathrm{~mol}\left(\mathrm{O}_{2}\right)\left(0.08206 \frac{\mathrm{l} \text {-arm }}{\mathrm{mol} \cdot \mathrm{~K}}\right)(290.2 \mathrm{~K})\right.}{0.0500 \mathrm{~L}} \\
& =2.91 \text { atm of } \mathrm{CO}_{2} \text { at } 50.0 \mathrm{~mL}, 290.2 \mathrm{~K}
\end{aligned}
$$

- thermodynamics: the study of energy transfer

Conservation of energy: Energy may change form, but the overall amount of energy remains constant. "first law of thermodynamics"

- ... but what IS energy?
- energy is the ability to do "work"
^ motion of matter

Kinds of energy?

- Kinetic energy: energy of matter in motion $E_{K}=\frac{1}{2} m V^{2}$
- Potential energy: energy of matter that is being acted on by a field of force (like gravity)

- What sort of energy concerns chemists? Energy that is absorbed or released during chemical reactions.
- Energy can be stored in chemicals ... molecules and atoms.

INTERNAL ENERGY: "U"

related to the kinetic and potential energy of atoms, molecules, and their component parts.

- We measure energy transfer ... which is called HEAT. (HEAT is the flow of energy from an area of higher temperature to an area of lower temperature)
$Q: h e a t$
SYSTEM: the object or material under study
SURROUNDINGS: everything else

Type of process	Energy is ...	Sign of Q	Temp of SURROUNDINGS ...
ENDOTHERMIC	transferred from SURROUNDINGS to SYSTEM	+	decreases
EXOTHERMIC	transferred from SYSTEM to SURROUNDINGS	-	increases

