
WRITING AN IONIC FORMULA

- if you know the ions that make up a compound, all you need to do is find the smallest ratio of cation to anion the compound needs to have an overall charge of zero

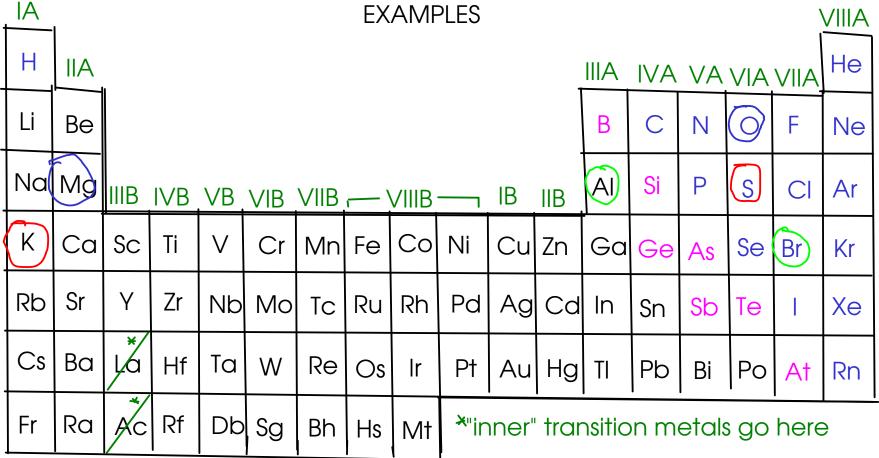
PREDICTING CHARGES

- how do you figure out the charge that an element might take when it becomes an ion?

- for many main group elements, you cah predict the charge using the periodic table!

IA	l																VIIIA
Н	IIA	1									T	IIIA	IVA	VA	VIA	VIIA	He
Li	Be											В	С	Ν	0	F	Ne
Na	Mg	IIIB	IVB	VB	VIB	VIIB	\	VIIIB		IB	IIB	AI	Si	Ρ	S	CI	Ar
К	Са		Ti	V		Mn		Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те		Xe
Cs	Ba	Ļá	Hf	Ta	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Ро	At	Rn
Fr	Ra	AC	Rf	Db	Sg	Bh	Hs	Mt	*"ir	ner"	trar	nsitio	n m	etals	s go	here)

Elements in group VIIIA - the "noble gases" - do not form ions!


Many OTHER main-group elements form either anions or cations that have the same overall number of electrons as the NEAREST (in terms of atomic number) noble gas!

$\left(\right)$	IA	l				F					Ň	VIIIA								
	Н	IIA	Vo	ucar	n reliai	bly de	IIIA	IVA	VA		VIIA	He								
	Li	Be	me	ethod	for G	roups , VIA,	В	С	Ν	0	F	۱٥ Ne								
	Na	Mg	IIIB	IVB	VB	VIB	VIIB	, <u> </u>	VIIIB		IB	→ IIB	AI	Si	Ρ	S	CI	رو Ar		
	K	Са	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	З6 Kr		
	Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	I	<mark>sң</mark> Хе		
	Cs	Ba	Ļa.	Hf	Ta	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Ро	At	Rn		
	Fr	Ra	AC	Rf	Db	Sg	Bh	Hs	Mt	*"inner" transition metals go here										

Aluminum (AI): At atomic number 13, it is three electrons away from neon (Ne), and 5 electrons away from argon (Ar). Prediction: Aluminum will lose three electrons to form the cation Al^{3+7}

Bromine (Br): At atomic number 35, bromine is one electron away from krypton (Kr). Prediction: Bromine will gain one electron to form the anion Br-

Strontium (Sr): At atomic number 38, strontium is two electrons away from krypton. Prediction: Strontium will lose two electrons to form the cation Sr 2+

Find the formulas of:

59

(1) an ionic compound containing AI and Br
(2) an ionic compound containing Mg and O
(3) an ionic compound containing S and K

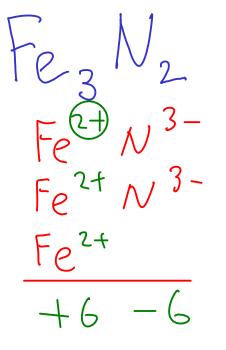
 $A|^{3+} B_{r}^{-}$ $M_{g}^{2+} O^{2-}$ $\zeta^{2-} K^{+}$

Find the formula of: * an ionic compound containing AI and Br $AI^{3+}Br^{-}$ Al³⁺ Br Br] ßr 5/2 Find the formula of: * an ionic compound containing Mg and O $M_{g^{2t}} O^{2t} \longrightarrow M_{gO}$ Find the formula of: * an ionic compound containing S and K $S^{2-}k^{T}$ $\left\langle \begin{array}{c} L^{-} \\ K \end{array} \right\rangle$ Reminder: Write the cation (+) first in an ionic formula! -----

IA	·l	TRANSITION METAL IONS															VIIIA
Н	IIA	I									4	IIIA	IVA	VA	VIA	VIIA	He
Li	Be											В	С	Ν	0	F	Ne
Na	Mg	IIB	IVB	VB	VIB	VIIB	<u> </u>	VIIIB _:		IB	IIB	AI	Si	Ρ	S	CI	Ar
К	Са	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	I	Xe
Cs	Ba	Ļá	Hf	Ta	W	Re	Os	lr	Pt	Au	Нg	TI	Pb	Bi	Po	At	Rn
Fr	Ra	AC	Rf	Db	Sg	Bh	Hs	Mt	*"ir	ner"	trar	nsitic	n m	etals	s go	here)

The transition metals always form CATIONS!

However, many transition metals are capable of forming SEVERAL DIFFERENT CATIONS!

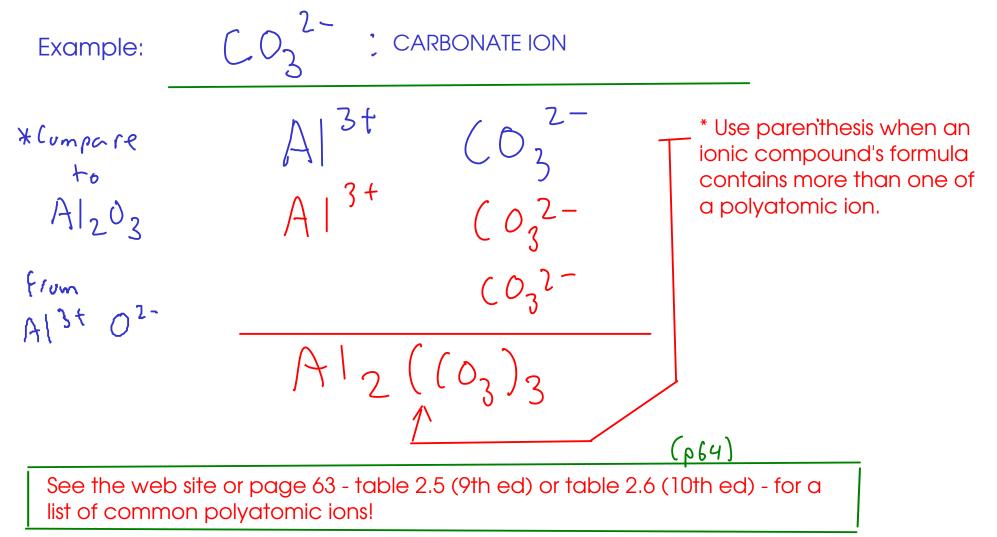

Example: Iron (Fe) forms two cations, depending on the situation: Fe^{2t} or Fe

TRANSITION METAL CATIONS

- So how do you know which cation you're dealing with? For now, you'll have to be told

- Either the chemical formula of an ionic compound or the name of an ionic compound can tell you what charge is on the transition metal cation.

$$\frac{Fe}{Fe} \frac{\sqrt{3}}{\sqrt{3}} - \frac{$$


* The charge of iron in this compound is +3. We call these ions "iron(III)" ions ... pronounced "iron three". The compound is called "iron(III) nitride".

* The charge of iron in this compound is +2. We call these ions "iron(II)" ions ... pronounced "iron two". The compound is called "iron(II) nitride".

POLYATOMIC IONS

- Some MOLECULES can gain or lose electrons to form CATIONS or ANIONS. These are called POLYATOMIC IONS

- Polyatomic ions form ionic compounds in the same way that single-element ions do.

NAMES OF IONS

- To properly discuss ions and ionic compounds, we have to know how to name them! CATIONS

3 kinds:

 $\widehat{1}$ Main group cations (metals that take only one charge when forming ions)

- The element's name is the same as the ion's name!

Mg²⁺: "magnesium ion"

/ Transition metal cations (from metals that can form several cations)

- The CHARGE of the cation must be given. Use a ROMAN NUMERAL after the element name to indicate charge!

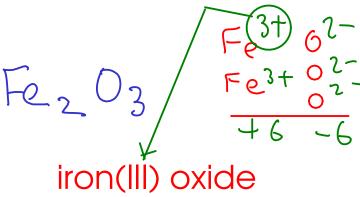
Fe : "iron(II) ion" Cu^{\dagger} : "copper(I) ion " Fe^{3†}: "Iron(III) ion"

(3)

Polyatomic cations

- Memorize list. $\stackrel{+}{}$ $NH_{\mathcal{H}}$: "ammonium ion" ANIONS 2 kinds Main-group nonmetals - Use the STEM NAME of the element, then add "-ide" suffix N³⁻: "nitride" ion P³⁻: "phosphide ion" S²: Sulfide Iun O^{2-} : "oxide ion" F : "fluoride ion" Polyatomic ions - Memorize list. (see web site)

 $C_2 H_3 O_2$: "acetate ion" SO_4^2 : "sulfate ion"


NO3 : "nitrate ion"

NO₂ : "nitrite ion"

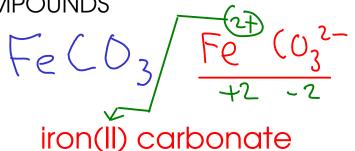
* Polyatomic ions ending in "-ate" and "-ite" suffixes always contain oxygen! "-ate" ions have more oxygen atoms than their "-ite" counterparts.

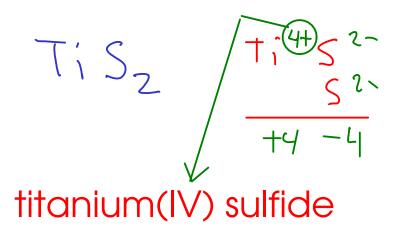
- The name of the compound is based on the name of the ions in the compound
- Cation first, anion second Examples:

 $M_{\mathcal{G}}(OH)_{\mathcal{L}}$ magnesium hydroxide

sodium sulfide

Be Brz beryllium bromide copper(II) oxide

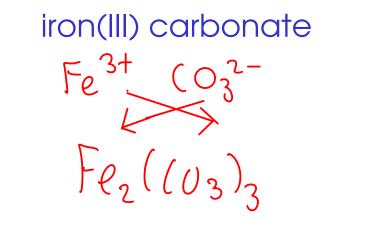

copper(I) oxide


* Remember to include the Roman numeral for CHARGE when you're writing transition metal compound names!

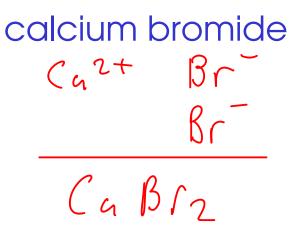
Page 63 (9th edition): Chart of polyatomic ions Page 64 (10th edition) NAMING IONIC COMPOUNDS

 $(NH_{4})_{2}S$

ammonium sulfide


Baz (PD4)2

barium phosphate Baz P2 barium phosphide


- DETERMINING THE FORMULA OF AN IONIC COMPOUND FROM THE NAME
- The name of an ionic compound is made of the names of the CATION and ANION in the compound.
- To get the FORMULA, you must figure out the SMALLEST RATIO of cation to anion that makes the charges balance out

Examples:

68

potassium sulfide K_{2}

