A balloon is taken from a room where the temperature is 27.0 C to a freezer where the temperature is -5.0 C . If the balloon has a volume of 3.5 L in the 27.0 C room, what is the volume of the balloon in the freezer. Assume pressure is constant.

$$
\begin{aligned}
& \frac{R_{1} V_{1}}{T_{1}}=\frac{R_{/ 2} V_{2}}{T_{2}} \quad \frac{V_{1}}{T_{1}}=\frac{V_{2}}{T_{2}} \\
& \frac{3.5 L}{300.2 K}=\frac{V_{2}}{268.2 \mathrm{~K}} \\
& 3.1 \mathrm{~L}=V_{2}
\end{aligned}
$$

$$
\text { Constant } P \rightarrow-
$$

$$
V_{1}=3 . S L \quad V_{2}=?
$$

$$
T_{1}=27.0^{\circ} \mathrm{C} T_{2}=-5.0^{\circ} \mathrm{C}
$$

$$
=300.2 \mathrm{~K}=268.2 \mathrm{~K}
$$

2.25 L of nitrogen gas is trapped in a piston at 25.0 C and 1.00 atm pressure. If the piston is pushed in so that the gas's volume is 1.00 L while the temperature increases to,
31.0 C , what is the pressure of the gas in the piston?

$$
\begin{aligned}
& \frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}} \\
& \frac{(1.00 \mathrm{~atm})(2.2 \mathrm{sL})}{298.2 \mathrm{~K}}=\frac{P_{2}(1.00 \mathrm{c})}{304.2 \mathrm{~K}} \\
& 2.30 \mathrm{~atm}=P_{2}
\end{aligned}
$$

$$
P_{1}=1.00 \mathrm{~atm} \quad P_{2}=?
$$

$$
v_{1}=2.25 \mathrm{~L} \quad v_{2}=1.00 \mathrm{~L}
$$

$$
\begin{array}{rlrl}
T_{1} & =25.0^{\circ} \mathrm{K} \\
& =298.2 \mathrm{~K} & T_{2} & =31.0^{\circ} \mathrm{C} \\
& =309.2 \mathrm{~K}
\end{array}
$$

Calculate the mass of $22650^{*} \mathrm{~L}$ of oxygen gas at 25.0 C and 1.18 atm pressure.

$$
\frac{\uparrow \mathrm{O}_{2}}{\mathrm{O}_{2}: 32 \cdot \circ \mathrm{~g}_{2}=\mathrm{mdl} \mathrm{O}_{2}}
$$

* Volume of a $10^{\prime} \times 10^{\prime} \times 8^{\prime}$ room

1 - Calculate moles of oxygen gas from the pressure, volume, and temperature using ideal gas equation.
2 - Convert moles oxygen gas to mass. Use FORMULA WEIGHT.

$$
\begin{array}{l|ll}
P V=n R T \\
n=\frac{P V}{R T} & V=22650 \mathrm{~L} & T=25.0^{\circ} \mathrm{C}=298.2 \mathrm{~K}
\end{array}
$$

(1) $n_{0_{2}}=\frac{(1.18 \mathrm{~atm})(22650 \mathrm{~L})}{\left(0.08206 \frac{\mathrm{c-atm}}{\mathrm{~mol} \cdot \mathrm{~K}}\right)(298.2 \mathrm{~K})}=1092.222357 \mathrm{~mol} \mathrm{O} \mathrm{O}_{2}$
(2) $1092.222357 \mathrm{mulo} \mathrm{O}_{2} \times \frac{32.0 \mathrm{~g} \mathrm{O}_{2}}{\mathrm{mulO}_{2}}=35000 \mathrm{~g} \mathrm{o}_{2} \sim 37 \mathrm{~K} \mathrm{~g}$
${ }^{143}$ CHEMICAL CALCULATIONS WITH THE GAS LAWS

$$
\mathrm{H}_{2} \mathrm{SO}_{4}\left(\mathrm{u}_{4}\right)+2 \mathrm{NaHCO}_{3}(\mathrm{~s}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+2 \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{Na}_{2} \mathrm{SO}_{4}\left(\mathrm{a}_{4}\right)
$$

Given 25.0 g of sodium bicarbonate and sufficient sulfuric acid, what volume of carbon dioxide gas would be produced at 25.0 C and 0.950 atm pressure?
1 - Convert 25.0 grams sodium bicarbonate to moles. Use FORMULA WEIGHT.
2 - Convert moles sodium bicarbonate to moles carbon dioxide. Use CHEMICAL EQUATION.
3 - Convert moles carbon dioxide to volume. Use IDEAL GAS EQUATION.

$$
\begin{aligned}
& \text { (1) } 84.007 \mathrm{~g} \mathrm{NaHCO}_{3}=\mathrm{mol} \mathrm{NaHCO}_{3} \text { (2) } 2 \mathrm{~mol} \mathrm{NaHCO}_{3}=2 \mathrm{~mol} \mathrm{CO} \\
& 25.0 \mathrm{~g} \mathrm{NaHCO}_{3} \times \frac{\mathrm{mol} \mathrm{NaHCO}_{3}}{84.007 \mathrm{~g} \mathrm{NaHCO}_{3}} \times \frac{2 \mathrm{mul} \mathrm{CO}}{2 \mathrm{~mol} \mathrm{NHCO}_{3}}=0.2975942481 \mathrm{~mol} \mathrm{CO}
\end{aligned}
$$

(3)

$$
\begin{array}{rlrl}
P V & =n R T & n=0.2975942481 \mathrm{~mol}\left(0_{2}\right. & T=25.0^{\circ} \mathrm{C}=298.2 \mathrm{~K} \\
V & =\frac{n R T}{P} \left\lvert\, \begin{array}{ll}
R=0.08206 \frac{\mathrm{Loatm}}{\mathrm{~mol} \cdot \mathrm{~K}} & P=0.950 \mathrm{~atm} \\
V & =\frac{\left(0.2975942481 \mathrm{~mol}\left(\mathrm{~m}_{2}\right)\left(0.08206 \frac{\mathrm{l}-\mathrm{atm}}{\mathrm{mol-K}}\right)(298.2 \mathrm{~K})\right.}{0.950 \mathrm{~atm}} \\
& =7.67 \mathrm{~L} \mathrm{CO}_{2} \text { at } 25.0^{\circ} \mathrm{C}, 0.950 \mathrm{~atm}
\end{array}\right.
\end{array}
$$

144
What volume would the gas in the last example problem have at STP?

$$
\begin{aligned}
& \text { STP: "Standard Temperature and Pressure" (} 0 \text { C and } 1 \mathrm{~atm} \text {) } \\
& \frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}} \\
& P_{1}=0.950 \mathrm{~atm} \quad P_{2}=1 \mathrm{~atm} \\
& V_{1}=7.67 \mathrm{~L} \quad V_{2}=\text { ? } \\
& T_{1}=298.2 \mathrm{~K} \quad T_{2}=0^{\circ} \mathrm{C}=273.2 \mathrm{~K}
\end{aligned}
$$

$$
\begin{aligned}
\frac{(0.950 \mathrm{arm})(7.67 \mathrm{~L})}{298.2 \mathrm{~K}} & =\frac{(1 \mathrm{~atm}) \mathrm{V}_{2}}{273.2 \mathrm{~K}} \\
6.67 \mathrm{~L} \text { at STP } & =V_{2}
\end{aligned}
$$

REAL GASES

- The empirical gas laws (including the ideal gas equation) do not always apply.
- The gas laws don't apply in situations where the assumptions made by kinetic theory are not valid.
- When would it be FALSE that the space between gas molecules is much larger than the molecules themselves?
- at high pressure, molecules would be much closer together!
- When would it be FALSE that attractive and repulsive forces would be negligible?
- at high pressure, attractions and repulsions should be stronger!
- at low temperature, attractions and repulsions have a more significant affect on the paths of molecules fast (high T) slow (low T)

-The gas laws are highly inaccurate near the point where a gas changes to liquid!
- In general, the lower the pressure and the higher the temperature, the more IDEAL a gas behaves.

