$29.6 \mathrm{~g} \mathrm{Na}_{2} \mathrm{SO}_{4}, 425.4 \mathrm{~g}$ water \leqslant previous solution

$$
m=\frac{m o l}{\mathrm{Ng}_{2} \mathrm{SO}_{4} \text { (1) }}
$$

definition of molality

1) Calculate the moles of sodium sulfate. Use FORMULA WEIGHT, then convert mass to moles.
2) Convert mass of water to kilograms.

$$
\begin{aligned}
\mathrm{Na}_{2} \mathrm{SO}_{4}: \mathrm{Na} & -2 \times 22.99 \\
\mathrm{~S} & -1 \times 32.07 \\
& O-\frac{4 \times 16.00}{142.0 \mathrm{~S}_{\mathrm{g}} \mathrm{Na}_{2} \mathrm{SO}_{4}}=\mathrm{mol} \mathrm{Na}_{2} \mathrm{SO}_{4}
\end{aligned}
$$

(1) $29.6 \mathrm{~g} \mathrm{Na}_{2} \mathrm{SO}_{4} \times \frac{\mathrm{mol} \mathrm{Na}_{2} \mathrm{SO}_{4}}{142.0 \mathrm{~g} \mathrm{Na}_{2} \mathrm{SO}_{4}}=0.2083773319 \mathrm{~mol} \mathrm{Na}_{2} \mathrm{SO}_{4}$
(2)

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{g}}=10 \mathrm{~g}^{3} \\
& 42 \mathrm{S.4} \mathrm{H}_{2} \mathrm{O} \times \frac{\mathrm{Kg}}{10^{3} \mathrm{~g}}=0.4254 \mathrm{kgH} \mathrm{O}
\end{aligned} \begin{aligned}
& \frac{0.2083773319 \mathrm{~mol} \mathrm{Na}_{2} \mathrm{SO}_{4}}{0.4254 \mathrm{~kg} \mathrm{H} 2 \mathrm{O}}= \\
& \\
& =0.490 \mathrm{~m} \mathrm{Na}_{2} \mathrm{SO}_{4}
\end{aligned}
$$

64
$29.6 \mathrm{~g} \mathrm{Na}_{2} \mathrm{SO}_{4}, 425.4 \mathrm{~g}$ water \leftarrow previous solution

$$
X_{\mathrm{Na}_{2} \mathrm{SO}_{4}}=\frac{\mathrm{mol} \mathrm{Na}_{2} \mathrm{SO}_{4}}{\mathrm{~mol} \mathrm{Na}_{2} \mathrm{SO}_{4}+\mathrm{mol} \mathrm{H}_{2} \mathrm{O} \text { (total moles) (2) }}
$$

1) Calculate moles sodium sulfate by changing grams to moles. We already did that for finding molality, so let's just use the same number here.
2) We need to add moles sodium sulfate to moles water. To get moles water, we can just convert water's mass to moles using water's formula weight.
(1) $0.2083773319 \mathrm{~mol} \mathrm{Na}_{2} \mathrm{SO}_{4}$

$$
\begin{aligned}
& \text { (2) } \mathrm{H}_{2} \mathrm{O}: \mathrm{H}-2 \times 1.0108 \\
& 0-\frac{1 \times 16.00}{18.016 \mathrm{gH}_{2} \mathrm{O}}=\text { mol } \mathrm{H}_{2} \mathrm{O} \\
& 42 \mathrm{~S} .4 \mathrm{gH}_{2} \mathrm{O} \times \frac{\mathrm{mul} \mathrm{H}_{2} \mathrm{O}}{18.016 \mathrm{gH}_{2 \mathrm{O}}}=23.61234458 \mathrm{~mol} \mathrm{H} \mathrm{H}_{2} \mathrm{O} \\
& X_{\mathrm{Na}_{2} \mathrm{SO}_{4}}=\frac{0.2083773319 \mathrm{~mol} \mathrm{Na}_{\mathrm{a}_{2} \mathrm{So}_{4}}}{0.2083773319 \mathrm{~mol} \mathrm{Na}_{\mathrm{a}_{2} \mathrm{SO}_{4}+23.61234458 \mathrm{~mol} \mathrm{H}}^{2 \mathrm{O}}}=0.0087 \mathrm{~S}
\end{aligned}
$$

${ }^{65} \mathrm{MOLARITY}$

- In the previous example, we converted between three of the four units that we discussed: mass percent, molality, and mole fraction.
- We didn't do MOLARITY, because the information given in the previous problem was not sufficient to determine molarity!

$$
\underline{M}=\frac{\text { moles solute }}{\text { Liviun }} \begin{aligned}
& \text { Molarity is based on VOLUME, while the other three } \\
& \text { units are based on MASS. (moles and mass can } \\
& \text { be directly converted) } \\
& \text { Volume depends on TEMPERATURE! }
\end{aligned}
$$

- If you HEAT a solution, what happens to CONCENTRATION?

$$
\begin{aligned}
& \text { ex: } \quad \frac{\text { S.00 mul } \mathrm{Na}_{2} \mathrm{So}_{4}}{L \text { constrant when }} \text { in } \frac{1 L \text { solution }}{\text { heated }} \text { increuses } \\
& \text { (thermul } \\
& \text { expunsion) }
\end{aligned}
$$

... the MOLAR CONCENTRATION decreases. (But the concentration in the other three units we discussed stays the same.)

- If you COOL a solution, the MOLAR CONCENTRATION increases. (The other three units stay the same!)
... we use MOLARITY so much because it's easy to work with. It is easier to measure the VOLUME of a liquid solution than it is to measure mass.

Example: How would we prepare 500 mL of 0.500 M sodium sulfate in water?
Dissolve the appropriate amount of sodium sulfate into enough water to make 500 mL of solution.

volumetric flask
Start by calculating moles sodium sulfate! (it's the only number

$$
\begin{aligned}
& -0.500 \mathrm{~m} \\
& 0.500 \mathrm{~m}=\frac{\mathrm{mol} \mathrm{Na}_{2} \mathrm{So}_{4}}{0.500 \mathrm{~L}} \text {, mol } \mathrm{Na}_{2} \mathrm{Su}_{4}=0.280 \mathrm{~mol} \mathrm{Nan} \mathrm{a}_{2} \mathrm{SO}_{4}
\end{aligned}
$$

Convert 0.250 moles sodium sulfate to grams, since we need to weigh the sodium sulfate on a balance! $\quad 142.0 \mathrm{~S} \mathrm{Na}_{2} \mathrm{SO}_{4}=\mathrm{mol} \mathrm{Na}_{2} \mathrm{SO}_{4}$

$$
0.250 \mathrm{~mol} \mathrm{Na} \mathrm{a}_{2} \mathrm{SO}_{4} \times \frac{142.0 \mathrm{ggNa}_{2} \mathrm{So}_{4}}{\mathrm{molNa}_{2} \mathrm{SO}_{4}}=3 \mathrm{~S} . \mathrm{SgNa}_{2} \mathrm{SO}_{4}
$$

Add 35.5 grams sodium sulfate to a 500 mL volumetric flask and add water to the mark.

More on MOLARITY
To prepare a solution of a given molarity, you generally have two options:
1 Weigh out the appropriate amount of solute, then dilute to the desired volume with solvent (usually water)"
-"stock solution"
(2) Take a previously prepared solution of known concentration and DILUTE it with solvent to form a new solution

- Use DILUTION EQUATION

The dilution equation is easy to derive with simple algebra.
$M \times V$

$$
\frac{\text { mol }}{L} \times L=\text { moles solute }
$$

... but when you dilute a solution, the number of moles of solute REMAINS CONSTANT. (After all, you're adding only SOLVENT)

$$
\begin{aligned}
& M_{1} V_{1}= \\
& \begin{array}{l}
\text { before } \\
\text { diution }
\end{array} \\
& \begin{array}{l}
\text { after } \\
\text { dilution }
\end{array}
\end{aligned}
$$

68

$$
\begin{aligned}
M_{1} V_{1} & =M_{2} \backslash /_{2} \quad \ldots \text { the "DILUTION EQUATION" } \\
M_{1} & =\text { molarity of concentrated solution } \\
V_{1} & =\text { volume of concentrated solution } \\
M_{2} & =\text { molarity of dilute solution } \\
V_{2} & =\text { volume of dilute solution }<(T O T A L ~ V O L U M E, ~ N O T ~ t h e ~ v o l u m e ~ w a t e r ~ a d d e d!) ~
\end{aligned}
$$

The volumes don't HAVE to be in liters, as long as you use the same volume UNIT for both V_{1} and V_{2}
Example: Take the 0.500 M sodium sulfate we discussed in the previous example and dilute it to make 150 mL of 0.333 M solution. How many mL of the original solution will we need to dilute?

$$
\left.\begin{array}{rlrl}
M_{1} V_{1}=M_{2} V_{2} & M_{1} & =0.500 \mathrm{~m} & M_{2}
\end{array}\right)=0.333 \mathrm{~m}, ~ V_{1}=150 . \mathrm{mL}
$$

Measure out 99.9 mL of the 0.500 M sodium sulfate stock, then add enough water to it to get a total volume of 150 mL .

- To convert between molarity and the other three concentration units we've studied, you have to know more about the solution. For example:

To perform this conversion, you can assume a liter of solution, which will give you the number of moles present. But you've then got to have a way to convert the volume of SOLUTION to the mass of the SOLVENT. How?

* You need DENSITY (which depends on temperature). The density of the solution will allow you to find the total mass of the solution.

If you subtract out the mass of the SOLUTE, then what you have left is the mass

* of the SOLVENT. Express that in kilograms, and you have all the information you need to find molality!

You'll run into the same situation when you use any of the other mass or mole

* based units. DENSITY is required to go back and forth between MOLARITY and these units.

70
Example: If a solution is 0.688 m citric acid, what is the molar concentration (M) of the solution?
The density of the solution is $1.049 \mathrm{~g} / \mathrm{mL}$

$$
\begin{aligned}
& \mathrm{H}_{3} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{7} ; 192.12 \mathrm{~s} / \mathrm{mol} \text { " } \mathrm{CA}^{\prime} \\
& \frac{0.688 \mathrm{molCA}}{\mathrm{Kg} \text { solvent }} \longrightarrow \frac{\text { molA }}{\text { solution }} \\
& \text { Definition of molality Definition of molarity }
\end{aligned}
$$

To solve this problem, we'll need to assume an amount of solution. (We call this ASSUMING A BASIS - it works since concentrations are ratios and we're just changing from one concentration unit to another!) We'll assume we have a kilogram of solvent. That means we already know how many moles of CA there are (. 688 moles).

* TIP: Always assume your basis to be the "bottom" of your starting concentration unit!

Now we just need to find out the volume of the solution! How? We have density - so if we can figure out how much the solution weighs, we can find the volume! We calculate the mass of CA from moles, then add it to the kilogram of solvent to get the total mass!

$$
\begin{aligned}
& 0.688 \mathrm{~mol}\left(A \times \frac{192.125 \mathrm{~g}(A}{\operatorname{mol}(A}=132.182 \mathrm{~g} C A\right. \\
& 1000 \mathrm{~g} \text { solvent }+132.182 \mathrm{~g}(A=1132.182 \mathrm{~g} \text { solution }
\end{aligned}
$$

Find volume using density

$$
\begin{aligned}
& \text { Find volume using density } \\
& 1132.182 \mathrm{~g} \text { solution } \times \frac{\mathrm{mL}}{1.049 \mathrm{~g}}=1079.296473 \mathrm{~mL}=1.079296473 \mathrm{~L} \\
& \text { Find molarity }
\end{aligned}
$$

$$
M=\frac{0.688 \mathrm{~mol} A \mathrm{~A}}{1.079296473 \mathrm{~L}}=0.637 \mathrm{mCA}
$$

