103

$$
\begin{aligned}
& 42.081 \mathrm{~g} / \mathrm{mul} \\
& \text { S3,064 } 91 \mathrm{mul} \\
& 4 \mathrm{C}_{3} \mathrm{H}_{6}+6 \mathrm{NO} \longrightarrow 4 \mathrm{C}_{3} \mathrm{H}_{3} \mathrm{~N}+6 \mathrm{H}_{2} \mathrm{O}+\mathrm{N}_{2} \\
& \text { propylene } \\
& \text { acrylonitrile }
\end{aligned}
$$

Calculate how many grams of acrylonitrile could be obtained from 651 g of propylene, assuming there is excess NO present.
1 - Convert 651 grams propylene to moles. Use FORMULA WEIGHT.
2 - Convert moles propylene to moles acrylonitrile. Use CHEMICAL EQUATION.
3 - Convert moles acrylonitrile to mass. Use FORMULA WEIGHT.
(1) $42.081 \mathrm{~g} \mathrm{C}_{3} \mathrm{H}_{6}=\mathrm{mol} \mathrm{C}_{3} \mathrm{H}_{6}$ (2) $4 \mathrm{~mol} \mathrm{C}_{3} \mathrm{H}_{6}=4 \mathrm{~mol}_{3} \mathrm{H}_{3} \mathrm{~N}$
(3) $53.064 \mathrm{~g} \mathrm{C}_{3} \mathrm{H}_{3} \mathrm{~N}=\mathrm{mol}_{3} \mathrm{C}_{3} \mathrm{~N}$

$$
6 \mathrm{Slg}_{3} \mathrm{H}_{6} \times \frac{\mathrm{mol}_{3} \mathrm{H}_{6}}{42.081 \mathrm{~g} \mathrm{C}_{3} \mathrm{H}_{6}} \times \frac{4 \mathrm{~mol}_{3} \mathrm{H}_{3} \mathrm{~N}}{4 \mathrm{~mol}_{3} \mathrm{H}_{6}} \times \frac{53.064 \mathrm{~g} \mathrm{C}_{3} \mathrm{H}_{3} \mathrm{~N}}{\mathrm{~mol}_{3} \mathrm{H}_{3} \mathrm{~N}}=82 \mathrm{lg}_{3} \mathrm{C}_{3} \mathrm{H}_{3} \mathrm{~N}
$$

104

$$
\begin{aligned}
\text { IS 1.90 g/ mol } \\
\begin{aligned}
10 \mathrm{FeSO}_{4}+2 \mathrm{KMnO}_{4}+8 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow & 5 \mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}+2 \mathrm{mnSO}_{4}+\mathrm{K}_{2} \mathrm{SO}_{4} \\
& +8 \mathrm{H}_{2} \mathrm{O}
\end{aligned}
\end{aligned}
$$

How many mL of 0.250 M potassium permanganate are needed to react with 3.36 g of iron(II) sulfate?
1 - Convert 3.36 grams iron(II) sulfate to moles. Use FORMULA WEIGHT.
2 - Convert moles iron(II) sulfate to moles potassium permangenate. Use CHEMICAL EQUATION.
3 - Convert moles potassium permangenate to volume solution. Use MOLARITY (0.250 M)
(1) $151.90 \mathrm{~g} \mathrm{FeSO}_{4}=\mathrm{mol} \mathrm{FeSO}_{4}$ (2) $10 \mathrm{~mol} \mathrm{FeSO}_{4}=2 \mathrm{~mol} \mathrm{KmnO}_{4}$
(3) $0.250 \mathrm{~mol} \mathrm{KMnO}_{4}=\mathrm{L}$

Since the problem asks specifically for the answer to be in mL , convert the units of our answer from L to $m L$...

$$
\begin{aligned}
& m L=10^{-3 L} \\
& 0.0177 L \times \frac{\mathrm{mL}}{10^{-3} \mathrm{~L}}=17.7 \mathrm{~mL} \text { of } 0.250 \mathrm{~m} \mathrm{Kmno4}_{4} \mathrm{Km}
\end{aligned}
$$

