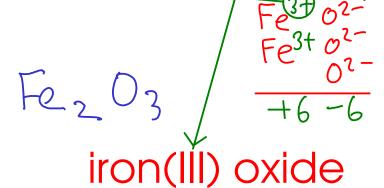
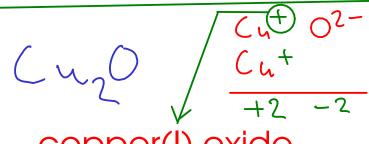
- The name of the compound is based on the name of the ions in the compound


- Cation first, anion second


Examples:

magnesium hydroxide

sodium sulfide

beryllium bromide

copper(I) oxide

Page 63 (9th edition): Chart of polyatomic ions Page 64 (10th edition)

^{*} Remember to include the Roman numeral for CHARGE when you're writing transition metal compound names!

ammonium sulfide

NAMING IONIC COMPOUNDS
$$Fe \left(\begin{array}{c} 5 \\ 7 \end{array} \right) = \begin{array}{c} 5 \\ 7 \end{array}$$

$$Fe \left(\begin{array}{c} 5 \\ 7 \end{array} \right) = \begin{array}{c} 2 \\ 7 \end{array}$$

$$Fe \left(\begin{array}{c} 2 \\ 3 \end{array} \right) = \begin{array}{c} 2 \\ 7 \end{array}$$

$$Fe \left(\begin{array}{c} 2 \\ 3 \end{array} \right) = \begin{array}{c} 2 \\ 7 \end{array}$$

$$Fe \left(\begin{array}{c} 2 \\ 3 \end{array} \right) = \begin{array}{c} 2 \\ 7 \end{array}$$

$$Fe \left(\begin{array}{c} 2 \\ 3 \end{array} \right) = \begin{array}{c} 2 \\ 7 \end{array}$$

$$Fe \left(\begin{array}{c} 2 \\ 3 \end{array} \right) = \begin{array}{c} 2 \\ 7 \end{array}$$

$$Fe \left(\begin{array}{c} 2 \\ 3 \end{array} \right) = \begin{array}{c} 2 \\ 7 \end{array}$$

$$Fe \left(\begin{array}{c} 2 \\ 3 \end{array} \right) = \begin{array}{c} 2 \\ 7 \end{array}$$

$$Fe \left(\begin{array}{c} 2 \\ 3 \end{array} \right) = \begin{array}{c} 2 \\ 7 \end{array}$$

$$Fe \left(\begin{array}{c} 2 \\ 3 \end{array} \right) = \begin{array}{c} 2 \\ 7 \end{array}$$

$$Fe \left(\begin{array}{c} 2 \\ 3 \end{array} \right) = \begin{array}{c} 2 \\ 7 \end{array}$$

$$Fe \left(\begin{array}{c} 2 \\ 3 \end{array} \right) = \begin{array}{c} 2 \\ 7 \end{array}$$

$$Fe \left(\begin{array}{c} 2 \\ 3 \end{array} \right) = \begin{array}{c} 2 \\ 7 \end{array}$$

$$Fe \left(\begin{array}{c} 2 \\ 3 \end{array} \right) = \begin{array}{c} 2 \\ 7 \end{array}$$

$$Fe \left(\begin{array}{c} 2 \\ 3 \end{array} \right) = \begin{array}{c} 2 \\ 7 \end{array}$$

$$Fe \left(\begin{array}{c} 2 \\ 3 \end{array} \right) = \begin{array}{c} 2 \\ 7 \end{array}$$

$$Fe \left(\begin{array}{c} 2 \\ 3 \end{array} \right) = \begin{array}{c} 2 \\ 7 \end{array}$$

$$Fe \left(\begin{array}{c} 2 \\ 3 \end{array} \right) = \begin{array}{c} 2 \\ 7 \end{array}$$

$$Fe \left(\begin{array}{c} 2 \\ 3 \end{array} \right) = \begin{array}{c} 2 \\ 7 \end{array}$$

$$Fe \left(\begin{array}{c} 2 \\ 3 \end{array} \right) = \begin{array}{c} 2 \\ 7 \end{array}$$

$$Fe \left(\begin{array}{c} 2 \\ 7 \end{array} \right) = \begin{array}{c} 2 \\ 7 \end{array}$$

$$Fe \left(\begin{array}{c} 2 \\ 7 \end{array} \right) = \begin{array}{c} 2 \\ 7 \end{array}$$

$$Fe \left(\begin{array}{c} 2 \\ 7 \end{array} \right) = \begin{array}{c} 2 \\ 7 \end{array}$$

$$Fe \left(\begin{array}{c} 2 \\ 7 \end{array} \right) = \begin{array}{c} 2 \\ 7 \end{array}$$

$$Fe \left(\begin{array}{c} 2 \\ 7 \end{array} \right) = \begin{array}{c} 2 \\ 7 \end{array}$$

$$Fe \left(\begin{array}{c} 2 \\ 7 \end{array} \right) = \begin{array}{c} 2 \\ 7 \end{array}$$

$$Fe \left(\begin{array}{c} 2 \\ 7 \end{array} \right) = \begin{array}{c} 2 \\ 7 \end{array}$$

$$Fe \left(\begin{array}{c} 2 \\ 7 \end{array} \right) = \begin{array}{c} 2 \\ 7 \end{array}$$

$$Fe \left(\begin{array}{c} 2 \\ 7 \end{array} \right) = \begin{array}{c} 2 \\ 7 \end{array}$$

$$Fe \left(\begin{array}{c} 2 \\ 7 \end{array} \right) = \begin{array}{c} 2 \\ 7 \end{array}$$

$$Fe \left(\begin{array}{c} 2 \\ 7 \end{array} \right) = \begin{array}{c} 2 \\ 7 \end{array}$$

$$Fe \left(\begin{array}{c} 2 \\ 7 \end{array} \right) = \begin{array}{c} 2 \\ 7 \end{array}$$

$$Fe \left(\begin{array}{c} 2 \\ 7 \end{array} \right) = \begin{array}{c} 2 \\ 7 \end{array}$$

$$Fe \left(\begin{array}{c} 2 \\ 7 \end{array} \right) = \begin{array}{c} 2 \\ 7 \end{array}$$

$$Fe \left(\begin{array}{c} 2 \\ 7 \end{array} \right) = \begin{array}{c} 2 \\ 7 \end{array}$$

$$Fe \left(\begin{array}{c} 2 \\ 7 \end{array} \right) = \begin{array}{c} 2 \\ 7 \end{array}$$

$$Fe \left(\begin{array}{c} 2 \\ 7 \end{array} \right) = \begin{array}{c} 2 \\ 7 \end{array}$$

$$Fe \left(\begin{array}{c} 2 \\ 7 \end{array} \right) = \begin{array}{c} 2 \\ 7 \end{array}$$

$$Fe \left(\begin{array}{c} 2 \\ 7 \end{array} \right) = \begin{array}{c} 2 \\ 7 \end{array}$$

$$Fe \left(\begin{array}{c} 2 \\ 7 \end{array} \right) = \begin{array}{c} 2 \\ 7 \end{array}$$

$$Fe \left(\begin{array}{c} 2 \\ 7 \end{array} \right) = \begin{array}{c} 2 \\ 7 \end{array}$$

$$Fe \left(\begin{array}{c} 2 \\ 7 \end{array} \right) = \begin{array}{c} 2 \\ 7 \end{array}$$

$$Fe \left(\begin{array}{c} 2 \\ 7 \end{array} \right) = \begin{array}{c} 2 \\ 7 \end{array}$$

$$Fe \left(\begin{array}{c} 2 \\ 7 \end{array} \right) = \begin{array}{c} 2 \\ 7 \end{array}$$

$$Fe \left(\begin{array}{c} 2 \\ 7 \end{array} \right) = \begin{array}{c} 2 \\ 7 \end{array}$$

$$Fe \left(\begin{array}{c} 2 \\ 7 \end{array} \right) = \begin{array}{c} 2 \\ 7 \end{array}$$

iron(II) carbonate

TiSz
$$\frac{4+}{5^2-}$$
 titanium(IV) sulfide

barium phosphide

- The name of an ionic compound is made of the names of the CATION and ANION in the compound.
- To get the FORMULA, you must figure out the SMALLEST RATIO of cation to anion that makes the charges balance out

Examples:

iron(III) carbonate

potassium sulfide

$$\frac{K^{+}S^{2-}}{K^{+}S}$$

calcium bromide

DETERMINING IONIC FORMULAS

$$\frac{\text{Strontium oxide}}{\text{Sr}^{2+}} \frac{\text{Sr}^{2-}}{\text{O}^{2-}}$$

tin(II) phosphate $S_{n}^{2+} PO_{4}^{3-}$ $S_{n}^{2+} PO_{4}^{3-}$ $S_{n}^{2+} PO_{4}^{3-}$ $S_{n}^{2+} PO_{4}^{3-}$

Ba²⁺ OH -OH -Ba (OH)2

barium hydroxide

Note: Be careful with HYDROXIDES, CYANIDES, and HYPOCHLORITES. These polyatomic ions do not end in their own subscripts, but you still need to use parenthesis if you want to add one!

- many ionic compounds are formed by crystallizing the compound from water. Sometimes, this causes water molecules to become part of the crystal structure.
- This water is present in a definite ratio to the ions in the compound. Can be removed by heating, but will NOT evaporate if the compound is left standing.

water molecules per formula unit of compound

CuSoy

dot indicates that the water is weakly bound to the ionic compound

- many DESSICANTS are hydrates that have had their water molecules driven off. They will slowly reabsorb water from the air (and keep the environment in a dessicator at a low humidity)

- Hydrates are named using the name of the ionic compound, and a Greek prefix in front of the word "hydrate" to indicate how many water molecules are associated

copper (11) sulfate pentahydrate

"copper(II)"?

MOLECULAR COMPOUNDS

- There are several kinds of molecular compound. We will learn to name two simple but important classes

BINARY MOLECULAR COMPOUNDS

- molecular compounds containing only two elements

- molecular compounds that dissolve in water to release H Tions
- corrosive to metals (react with many to produce hydrogen gas)
- contact hazard: can cause chemical burns to eyes and skin
- sour taste
- turn litmus indicator RED
- two kinds of acids:

- contain hydrogen and one other element

- contain hydrogen, OXYGEN, and another element

BINARY MOLECULAR COMPOUNDS

- Named based on the elements they contain, plus prefixes to indicate the number of atoms of each element in each molecule

FIRST ELEMENT

- Add a GREEK PREFIX to the name of the element.
- Omit the "MONO-" (1) prefix if there is only one atom of the first element

SECOND ELEMENT

- Add a GREEK PREFIX to the STEM NAME of the element
- Add the suffix "-ide" (as if you were naming an anion)
- DO NOT omit the "mono-" prefix if there is only one atom of the second element

SEE COURSE WEB SITE FOR A LIST OF GREEK PREFIXES!
THESE ARE THE SAME PREFIXES USED FOR THE HYDRATES!

Examples:

BF3

boron trifluoride Cl₂0₇ dichlorine hept(a)oxide

CO carbon monoxide

CO₂ carbon dioxide

*Note: metalloids like boron behave chemically like nonmetals do.

carbon tetrachloride

C(14

dihydrogen monoxide

dinitrogen tetrafluoride