DETERMINING IONIC FORMULAS
sodium sulfate
strontium oxide

$$
\frac{\mathrm{Na}_{a^{+}} \mathrm{SO}_{4}^{2-}}{\mathrm{Na}_{2} \mathrm{SO}_{4}}
$$

$$
\frac{S r^{2+} O^{2-}}{\operatorname{SrO}}
$$

tin(II) phosphate
chromium (III) nitrate

$$
\begin{aligned}
& \mathrm{Sn}^{2+} \mathrm{PO}_{4}^{3-} \\
& \mathrm{Sn}^{2+} \mathrm{PO}_{4}^{3-} \\
& \frac{\mathrm{Sn}^{2+}}{\mathrm{Sn}_{3}\left(\mathrm{PO}_{4}\right)_{2}}
\end{aligned}
$$

barium hydroxide

$$
\begin{array}{r}
\mathrm{Cr}^{3+} \mathrm{NO}_{3}^{-} \\
\mathrm{NO}_{3}^{-} \\
\mathrm{NO}_{3}^{-}
\end{array} \frac{\mathrm{Cr}\left(\mathrm{NO}_{3}\right)_{3}}{}
$$

titanium(IV) chloride

Note: Be careful when adding subscripts to HYDROXIDE, CYANIDE, and HYPOCHLORITE ions. You need to add parenthesis to indicate more than one of any polyatomic ion, even if that ion doesn't end with its own subscript!

- many ionic compounds are formed by crystallizing the compound from water. Sometimes, this causes water molecules to become part of the crystal structure.
- This water is present in a definite ratio to the ions in the compound. Can be removed by heating, but will NOT evaporate if the compound is left standing.

- many DESSICANTS are hydrates that have had their water molecules driven off. They will slowly reabsorb water from the air (and keep the environment in a dessicator at a low humidity)
- Hydrates are named using the name of the ionic compound, and a Greek prefix infront of the word "hydrate" to indicate how many water molecules are associated
copper (II) sulfate pentahydrute
- There are several kinds of molecular compound. We will learn to name two simple but important classes
(1) $\frac{\text { BINARY MOLECULAR COMPOUNDS }}{}$
- molecular compounds containing only two elements
(2) ACIDS
- molecular compounds that dissolve in water to release H^{+}ions
- corrosive to metals (react with many to produce hydrogen gas)
- contact hazard: can cause chemical burns to eyes and skin
- sour taste
- turn litmus indicator RED
- two kinds of acids:
(1) BINARY ACIDS

- contain hydrogen and one other element
(2) OXYACIDS
- contain hydrogen, OXYGEN, and another element
- Named based on the elements they contain, plus prefixes to indicate the number of atoms of each element in each molecule
(1) FIRST ELEMENT
- Add a GREEK PREFIX to the name of the element.
- Omit the "MONO-" (1) prefix if there is only one atom of the first element
(2) SECOND ELEMENT
- Add a GREEK PREFIX to the STEM NAME of the element
- Add the suffix "-ide" (as if you were naming an anion)
- DO NOT omit the "mono-" prefix if there is only one atom of the second element

SEE COURSE WEB SITE FOR A LIST OF GREEK PREFIXES! THESE ARE THE SAME PREFIXES USED FOR THE HYDRATES!

Examples:	BINARY MOLECULAR COMPOUNDS		
BF_{3}	$\mathrm{Cl}_{2} \mathrm{O}$	CO	CO_{2}
boron	dichlorine	carbon	carbon
trifluoride	hept(a)oxide	monoxide	dioxide
*Note: metalloids like boron behave chemically like nonmetals do.			
carbon tetrachloride	dihydrogen monoxide	dinitrogen tetrafluoride	
CCl_{4}	$\mathrm{H}_{2} \mathrm{O}$	$\mathrm{N}_{2} \mathrm{~F}_{4}$	

(1) BINARY ACIDS

- named after the element (other than hydrogen) they contain
- common binary acids include a Group VIIA element
- named: "Hydro-" + STEM NAME OF ELEMENT+ "-ic acid"

Four
common
binary
acids
H F : hydrofluoric acid* dissolves glass!
$\mathrm{HCl}:$ hydrochloric acid ${ }^{*}$ most common binary acid!
HBr: hydrobromic acid
HI: hydroiodic acid

- Easy to think about as HYDROGEN IONS combined with POLYATOMIC IONS
- These acids are not true ionic compounds, but they interact with water to PRODUCE ions!
- named based on the polyatomic ion they contain, with an ending change:
(1) - ions ending in -ATE form acids ending in -IC
(2) - ions ending in -ITE form acids ending in -OUS

sulfuric
acid
phosphoric acid
sulfurous
acid
nitric acid

$\kappa^{\text {based on carbon ATE }}$ carbonic acid $\mathrm{H}^{+} \mathrm{CO}_{3}^{2-}$ $\frac{\mathrm{H}^{+}}{\mathrm{H}_{2} \mathrm{CO}_{3}}$

The number of hydrogen atoms at the beginning of the formula equals the charge of the anion the acid is based on!

- You need to be able to tell, by looking at a name OR a formula, what kind of compound you are working with!

DON'T GET THE NAMING SYSTEMS MIXED UP! EACH KIND OF COMPOUND IS NAMED WITH ITS OWN SYSTEM!

FROM A CHEMICAL NAME

- If the name has a Roman numeral, the name of a metal, or "ammonium", the compound is likely IONIC
- If the name has a Greek prefix AND the prefix is NOT in front of the word "hydrate", the compound is BINARY MOLECULAR
- If the name contains the word "acid":
... and starts with "hydro-", then the compound is a BINARY ACID
... and does not start with "hydro-", the compound is an OXYACID
- if the formula contains a metal or the NH_{4}^{+}ion, it is likely IONIC

$$
\mathrm{H}_{2} \mathrm{O} \quad \mathrm{H}_{2} \mathrm{O}_{2}
$$

- If the formula starts with H and is not either water or hydrogen peroxide, the compound is likely an ACID. Which kind?
- BINARY ACIDS contain only two elements
- OXYACIDS contains oxygen
- If the formula contains only nonmetals (and is not an ammonium compound or an acid), the compound is likely MOLECULAR

Examples:
$\mathrm{PCl}_{3}: \begin{aligned} & \text { BINARY MOLECULAR } \\ & \text { Name: phosphorus trichloride }\end{aligned} \mathrm{NH}_{4} \mathrm{Cl}:$: NNIC (ammonium ion)
$\mathrm{H}_{3} \mathrm{PO}_{4}: \begin{aligned} & \text { OXYACID (hydrogen, phosphate) } \\ & \text { Name: phosphoric acid }\end{aligned} \mathrm{Fe}(\mathrm{OH})_{2}: \begin{aligned} & \text { IONIC (starts with a metal) } \\ & \text { Name: iron(II) hydroxide }\end{aligned}$

CHEMICAL EQUATIONS

- are the "recipes" in chemistry
- show the substances going into a reaction, substances coming out of the reaction, and give other information about the process

$$
\mathrm{MgCl}_{2}(\mathrm{aq})+2 \mathrm{AgNO}_{3}(\mathrm{aq}) \xrightarrow{\text { "yields" }} 2 \mathrm{AgCl}(\mathrm{~s})+\mathrm{Mg}_{\mathrm{g}}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})
$$

REACTANTS - materials that are needed fo a reaction

PRODUCTS - materials that are formed in a reaction

COEFFICIENTS - give the ratio of molecules/atoms of one substance to the others
PHASE LABELS - give the physical state of a substance:
(s) -solid
(I) - liquid
(g) - gas
(aq) - aqueous. In other words, dissolved in water

CHEMICAL EQUATIONS

$2 \mathrm{mg}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \xrightarrow{\triangle} 2 \mathrm{MgO}(\mathrm{s})$

REACTION CONDITIONS - give conditions necessary for chemical reaction to occur. May be:

- \triangle apply heat
- catalysts - substances that will help reaction proceed faster
- other conditions, such as required temperatures
- Reaction conditions are usually written above the arrow, but may also be written below if the reaction requires several steps or several different conditions
- Experimentally, we can usually determine the reactants and products of a reaction
- We can determine the proper ratios of reactants and products WITHOUT further experiments, using a process called BALANCING
- BALANCING a chemical equation is making sure the same number of atoms of each element go into a reaction as come out of it.
- A properly balanced chemical equation has the smallest whole number ratio of reactants and products.
- There are several ways to do this, but we will use a modified trial-and-error procedure.

$$
\begin{gathered}
\mathrm{C}_{3} \mathrm{H}_{8}+\mathrm{SO}_{2} \rightarrow 3 \mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O} \\
\psi_{10}
\end{gathered} \quad 6+4=10
$$

(1) Pick an element. Avoid (if possible) elements that appear in more than one substance on each side of the equation.

(2)
Change the coefficients on substances containing this element so that the same number of atoms of the element are present on each side. CHANGE AS LITTLE AS POSSIBLE!
(3)

Repeat 1-2 until all elements are done.
Go back and quickly VERIFY that you have the same number of atoms of each element on each side, If you used any fractional coefficients, multiply each coefficient by the DENOMIMATOR of your fraction.

Use SMALLEST WHOLE NUMBER RATIOS!

$$
\begin{aligned}
& 3 \mathrm{MgCl}_{2}+2 \mathrm{Na}_{3} \mathrm{PO}_{4} \xrightarrow{\text { BALANCING }} \mathrm{m}_{\mathrm{g}_{3}}\left(\mathrm{PO}_{4}\right)_{2}+6 \mathrm{NaCl} \\
& \mathrm{C}_{2} \mathrm{H}_{2}+2 \frac{1}{2} \mathrm{O}_{2} \longrightarrow 2 \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \\
& 4 \mathrm{~S}
\end{aligned}
$$

We used $21 / 2$ as the coefficient for molecular oxygen (to give us 5 oxygen atoms going in), but we need WHOLE NUMBER coefficients. To get whole numbers, just multiply ALL the coefficients by the denominator of the fraction (2 , here).

$$
\begin{aligned}
& 2 \mathrm{C}_{2} \mathrm{H}_{2}+5 \mathrm{O}_{2} \longrightarrow 4 \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O} \\
& \mathrm{H}_{2} \mathrm{SO}_{4}+2 \mathrm{NaOH} \longrightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+2 \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

1 - Avoid H, balance S instead. (H shows up twice on left)
2 - Avoid O, balance Na. (O shows up in all four compounds!)
3 - Balance H (shows up less than O)
4 - Balance O.

CHEMICAL CALCULATIONS - RELATING MASS AND ATOMS

Chemical equations are written
and balanced in terms of
ATOMS and MOLECULES

- While chemical equations are written in terms of ATOMS and MOLECULES, that's NOT how we often measure substances in lab!
- measurements are usually MASS (and sometimes VOLUME), NOT number of atoms or molecules!

THE MOLE CONCEPT

- A "mole" of atoms is 6.022×10^{23} a tums
- Why - in the metric dominated world of science - do we use such a strange number for quantity of atoms?

The mole is also defined as the number of carbon-12 atoms in exactly 12 g of carbon- 12
carbon-12

THE MOLE CONCEPT

- Why define the mole based on an experimentally-measured number?
- The atomic weight of an element (if you put the number in front of the unit GRAMS) is equal to the mass of ONE MOLE of atoms of that element!

the mass of ONE MOLE of naturally-occurring carbon atoms

Magnesium (Mg): $24.31 \mathrm{~g}=$ the mass of ONE MOLE OF MAGNESIUM ATOMS

- So, using the MOLE, we can directly relate a mass and a certain number of atoms!

RELATING MASS AND MOLES

- Use DIMENSIONAL ANALYSIS (a.k.a "drag and drop")
- Need CONVERSION FACTORS - where do they come from?
- We use ATOMIC WEIGHT as a conversion factor.

$$
M_{\substack{\text { (Atomic } \\ \text { mass }}}^{24.31} \left\lvert\, 24.31 \mathrm{~g} \mathrm{mg}_{\mathrm{g}}^{24}=\frac{\mathrm{mol}}{\substack{\text { "mol" is the } \\ \text { abbreviation for } \\ \text { "mole" }}}\right.
$$

Example: How many moles of atoms are there in 250 g g of magnesium metal?

$$
\begin{aligned}
& 24.31 \mathrm{~g} \mathrm{Mg}=\mathrm{mol} \mathrm{mg} \\
& 250 . \mathrm{g} \mathrm{mg}_{\mathrm{g}} \times \frac{\mathrm{mol} \mathrm{Mg}}{24.31 \mathrm{~g} \mathrm{Mg}}=10.3 \mathrm{~mol} \mathrm{Mg}
\end{aligned}
$$

Example: You need 1.75 moles of iron. What mass of iron do you need to weigh out on the balance?

$$
\begin{aligned}
& 55.85 \mathrm{~g} \mathrm{Fe}=\mathrm{mol} \mathrm{Fe} \\
& 1.75 \mathrm{~mol} \mathrm{Fe} \times \frac{55.85 \mathrm{gFe}}{\mathrm{~mol} \mathrm{Fe}}=97.7 \mathrm{~g} \mathrm{Fe}
\end{aligned}
$$

Example: 25.0 g of WATER contain how many MOLES of water molecules?

$$
\begin{aligned}
\mathrm{H}_{2} \mathrm{O}: \quad \begin{aligned}
& \mathrm{H}: 2 \times 1.008=2.016 \\
& \mathrm{O}: 1 \times 16.00=\frac{16.00}{18.0161-\mathrm{FORMULA} \text { WEIGHT of water }} \\
& 18.016 \mathrm{~g} \mathrm{H} \mathrm{H}=\mathrm{mol} \mathrm{H}_{2} \mathrm{O} \quad \begin{array}{l}
\text { FORMULA WEIGHT is the mass of one mole } \\
\text { of either an element OR a compound. }
\end{array} \\
& 2 \mathrm{S.0} \mathrm{~g} \mathrm{H}_{2} \mathrm{O} \times \frac{\mathrm{mol} \mathrm{H}}{18 \mathrm{O} \mathrm{Ol} \mathrm{HgH}_{2} \mathrm{O}}=1.39 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}
\end{aligned}
\end{aligned}
$$

Formula weight goes by several names:

- For atoms, it's the same thing as ATOMIC WEIGHT
- For molecules, it's called MOLECULAR WEIGHT
- Also called "MOLAR MASS"

90
Example: How many grams of barium chloride do we need to weigh out to get 3.65 moles of barium chloride?

First, find out the formula of barium chloride.

$$
\frac{\mathrm{Ba}^{2+} \mathrm{Cl}^{-}}{\mathrm{Cl}^{-}}
$$

Second, find the FORMULA WEIGHT

$$
\begin{aligned}
\mathrm{BaCl}_{2}: \mathrm{Ba}-1 \times 137.3 \\
\mathrm{Cl}-\frac{2 \times 35.45}{208.2 \mathrm{~g} \mathrm{BaCl}}=\mathrm{mol} \mathrm{BaCl}_{2}
\end{aligned}
$$

FInally, calculate the mass needed ...

$$
3.65 \mathrm{~mol} \mathrm{BaCl} 2 \times \frac{208.2 \mathrm{gBaCl}}{\mathrm{~mol} \mathrm{BaCl}} \frac{760 . \mathrm{g} \mathrm{BaCl}_{2}}{\left(\mathrm{Br} 76 \overline{\mathrm{~g} \mathrm{BaCl}}_{2}\right)}
$$

