For a WEAK ACID, equilibrium does not lie far to the right. The ionization equilibrium of the acid itself is important!

$$HA + H_2 0 \rightleftharpoons H_3 0^{+} + A^{-}$$

$$HA + H_2 0 \rightleftharpoons H_3 0^{+} + A^{-}$$
Again, water's concentration will
- not change significantly, so it is
folded into the ionization constant
ionization
$$(HA) = \text{concentration of undissociated acid}$$

For a WEAK BASE, equilibrium does not lie far to the right. The ionization equilibrium of the base itself is important!

$$B + H_2 O \rightleftharpoons BH^4 + OH^3$$

$$K_b = \frac{[BH^4][OH^3]}{[B]}$$
base [B] ionization constant

Values for Ka and Kb can often be found in data books / tables / or on the web.

In Ebbing, this data is in the appendices, on pages A-13 and A-14

WEAK ELECTROLYTES

- In solutions of weak acids or bases, the UNDISSOCIATED form is present in significantly high concentration.

- The pH of a solution of weak acid will be HIGHER than the pH of a strong acid solution with the same nominal concentration!

- The pH of a solution of weak base will be LOWER than the pH of a strong base solution with the same nominal concentration!

Consider a 0.100M solution of nitrous acid, a WEAK ACID (HNO_2)

$$\frac{1NO_{2} + H_{2}O}{K_{a}} = \frac{1}{(H_{3}O + 1)} \frac{1}{NO_{2}} = 4.5 \times 10^{-1}}{(H_{1}NO_{2})} = 4.5 \times 10^{-1}}$$

Found on page A-14 in Ebbing 10th edition. These K values are determined experimentally like other equlibrium constants.

What is the pH of the solution?

Set up a chart and solve an equilibrium problem, since this time we CANNOT ignore the equilibrium of the acid - not all nitrous acid molecules make hydronium!

Species	[Initial]	\bigtriangleup	[Equilibrium]
H_{30}^{+}	0	+ X	X
NO2	0	+ X,	X
HN02	0.100	$-\chi$	0.100 - X

Let "x" equal the increase in hydronium ion concentraiton.

Plug equilibrium values into Ka expression...

$$\frac{(x)(x)}{(0.100-x)} = 4.5 \times 10^{-4}$$

$$\frac{(x)(x)}{(0,100-x)} = 4.5 \times 10^{-4}$$
This is a quadratic, We can sequation:

$$\frac{x^{2}}{0,100-x} = 4.5 \times 10^{-4}$$
This is a quadratic, We can sequation:

$$a_{x^{2}+b_{x}+c=0}$$

$$x_{z} = -b^{\pm}\sqrt{b^{2}-4_{ac}}$$

$$\frac{x_{z}}{2_{a}}$$
When is is safe to assume the variation? When is at least 1000x smaller than the lift that's not true, you should solve $x^{2} = 4.5 \times 10^{-5}$

$$x^{2} = 4.5 \times 10^{-5}$$

$$x^{2} = 4.5 \times 10^{-5}$$

$$x^{2} = 4.5 \times 10^{-5}$$

$$x^{2} = 4.5 \times 10^{-5}$$
(Solving the quadratic gives a pH of 2.19)

e can solve it with the quadratic

the value of "x" is small relative to When the equilibrium constant an the initial concentration is. Id solve the quadratic!

Compare:

144

- Weak acid HNO_2 : pH of 0.10 M solution = 2.17

Let's compare the pH of the weak nitrous acid with the pH of a strong acid like nitric acid: $0.10 \text{ m} \text{ H} \text{ v} 0_2$, What is pH?

The stronger the acid:

- the lower the pH of a solution of given concentration will be
- the higher the concentration of hydronium ion (when compared to the nominal acid concentration)

¹⁴⁵ Consider an 0.100 M solution of the weak base ammonia:

NH3; H	$\langle b = [. g_X]$	0 ⁻⁵	(pA-14, Ebbing 9	+h) .
What is the photometry $NH_3 + H_2$	$1?_{20} \rightleftharpoons NH_{4}^{+} +$	-0H ⁻	$K_{b} = \frac{[NH_{4}+][OH^{-}]}{[NH_{3}]}$	= 1.8×10-5
Species	[Initial]	\triangle	[Equilibrium]	let "x" equal the
NHy+	0	+ χ	X	increase in ammonium ion
OH-	Ø	+-X	X	concentration.
NH3	0.100	-X	0.100-X	

To get pH, we need to first find the concentration of HYDROXIDE (it's directly relatable to hydronium and pH...) $\sqrt{\frac{1}{2}} = 1.68 \times 10^{-5}$

$$\frac{(x)(x)}{(0.100-x)} = 1.6 \times 10^{-5}$$
$$\frac{x^2}{0.100-x} = 1.8 \times 10^{-5}$$

Assume x << 0.100, so 0.100-x = 0.100

$$\frac{\chi^{2}}{0.100} = |.8 \times 10^{-5}$$

$$\chi = 0.00|34|6408 = [0H^{-}]$$

$$poH = 2.87$$

$$poH = -109[0H^{-}]$$

$$pH = 11.13$$

$$pH + poH = 14.00$$

(Solving this with the quadratic equation gives a pH of 11.13)

Compare pH to the pH of an 0.100 M solution of the strong base NaOH: $PM_{INH_3} > 11.13$ $NaOH \rightarrow Na^{-1} + OH^{-1}$ $S_{0} = 0.100$

The stronger the base:

- the higher the pH will be for a solution of given concentration
- the higher the HYDROXIDE concentration (compared to the nominal base concentration)

¹⁴⁷ Find the pH and the degree of ionization for an 0.10 M solution of formic acid: $HCHO_2$

$HCHO_2 + H_1$	$_{2}0 \neq H_{3}0^{\dagger} +$	(H02	$E K_{a} = [H_{3}0^{+}][$	(HO2)=1.7x1044	Ka from page	
Start off by	calculating pH		EHCHO	27	textbook	
Species	[Initial]	\land	LEquilibriums	Let "x" equal the in	icrease in	
H30+	0	+X	X	hydronium ion concentration		
(H02-	0	+X	×			
HCH02	0.10	$-\chi$	0.10-X			
$\frac{(x)(x)}{(0,10-x)} = 1.7 \times 10^{-4}$			$\chi = 0.0041231056 = [H_30+]$			
$\frac{\chi^2}{2} = 1.7 \times 10^{-4}$			pH=2.38			
0 \cdot 10 -X \downarrow Assume x <<0.10, so \downarrow 0.10-x = 0.10 $\frac{\chi^2}{0.10} = 1.7 \times 10^{-4}$			On the next page the degree of ionization	On the next page, we'll find the degree of ionization		