For a WEAK ACID, equilibrium does not lie far to the right. The ionization equilibrium of the acid itself is important!

For a WEAK BASE, equilibrium does not lie far to the right. The ionization equilibrium of the base itself is important!

$$
\begin{gathered}
\mathrm{B}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{BH}^{+}+\mathrm{OH}^{-} \\
\mathrm{K}_{b}=\frac{\left[\mathrm{BH}^{+}\right]\left[\mathrm{OH}^{-}\right]}{[\mathrm{B}]}
\end{gathered}
$$

Values for Ka and Kb can often be found in data books / tables / or on the web.

In Ebbing, this data is in the
ionization¹ appendices, on pages A-13 and A-14

- In solutions of weak acids or bases, the UNDISSOCIATED form is present in significantly high concentration.
- The pH of a solution of weak acid will be HIGHER than the pH of a strong acid solution with the same nominal concentration!

- The pH of a solution of weak base will be LOWER than the pH of a strong base solution with the same nominal concentration!

142
Consider a 0.100 M solution of nitrous acid, a WEAK ACID $\left(\mathrm{HNO}_{2}\right)$

$$
\begin{aligned}
& \mathrm{HNO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{NO}_{2}^{-} \\
& \mathrm{Ka}_{\mathrm{a}}=\frac{\left[\mathrm{H}_{3} \mathrm{O}+\right]\left[\mathrm{NO}_{2}^{-}\right]}{\left[\mathrm{HNO}_{2}\right]}=4 . \mathrm{S} \times 10^{-4}
\end{aligned}
$$

Found on page

What is the pH of the solution?
A-14 in Ebbing

DOth edition. These
K values are determined experimentally like other equilibrium constants.

Set up a chart and solve an equilibrium problem, since this time we CANNOT ignore the equilibrium of the acid - not all nitrous acid molecules make hydronium!

Species	$[$ Initial $]$	Δ	$\left[E_{\text {quilibrivm }}\right]$
$\mathrm{H}_{3} \mathrm{O}^{+}$	0	$+X$	X
NO_{2}^{-}	O	$+X$	X
HNO_{2}	0.100	$-X$	$0.100-X$

Let "x" equal the increase in hydronium ion concentraiton.

Plug equilibrium values into Ka expression...

$$
\frac{(x)(x)}{(0.100-x)}=4.5 \times 10^{-4}
$$

143

$$
\begin{aligned}
\frac{(x)(x)}{(0.100-x)} & =4.5 \times 10^{-4} \\
\frac{x^{2}}{0.100-x} & =4.5 \times 10^{-4}
\end{aligned}
$$

This is a quadratic, We can solve it with the quadratic equation:

$$
\begin{aligned}
& a x^{2}+b x+c=0 \\
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
\end{aligned}
$$

$$
\begin{aligned}
& \downarrow \begin{array}{l}
\text { Assume } x \ll 0.100, \text { so } \\
0.100-x=.100
\end{array} \\
& \frac{x^{2}}{0.100}=4.5 \times 10^{-4}
\end{aligned}
$$

When is is safe to assume the value of "x" is small relative to the initial concentration? When the equilibrium constant is at least $1000 x$ smaller than the initial concentration is. If that's not true, you should solve the quadratic!

$$
x^{2}=4.5 \times 10^{-5}
$$

$$
x=0.0067082039=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]
$$

$p H \simeq 2.17$ (Solving the quadratic gives a pH of 2.19)

Compare:

- Weak acid HNO_{2} : pH of 0.10 M solution $=2.17$

Let's compare the pH of the weak nitrous acid with the pH of a strong acid like nitric acid:

$$
\begin{gathered}
0.10 \mathrm{mHNO} 3, \text { what is } \mathrm{pH}_{1} \text { ? } \\
\mathrm{HNO}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{NO}_{3}^{-} \\
\mathrm{O}, 10 \mathrm{MHNO}_{3},\left[\mathrm{H}_{3} \mathrm{O}_{3}^{+}\right]=0,10 \mathrm{~m} \\
\mathrm{pH}=1.00
\end{gathered}
$$

The stronger the acid:

- the lower the pH of a solution of given concentration will be
- the higher the concentration of hydronium ion (when compared to the nominal acid concentration)
${ }^{145}$ Consider an 0.100 M solution of the weak base ammonia:

$$
\mathrm{NH}_{3} j \mathrm{~K}_{b}=1.8 \times 10^{-5}\left(p A-14,6 b b i n g g^{\text {th }}\right)
$$

What is the pH ?

$$
\begin{aligned}
& \text { What is the } \mathrm{pH} \text { ? } \\
& \mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NH}_{4}^{+}+\mathrm{OH}^{-} \quad \mathrm{K}_{6}=\frac{\left[\mathrm{NH}_{4}^{+}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{NH}_{3}\right]}=1.8 \times 10^{-5} .
\end{aligned}
$$

Species	$\left[I_{\text {nilial }}\right]$	Δ	$\left[E_{q u i l}\right.$ brim $]$
$\mathrm{NH}_{4}{ }^{+}$	0	$+X$	X
OH^{-}	0	$+X$	X
NH_{3}	0.100	$-X$	$0.100-X$

Let "x" equal the increase in ammonium ion concentration.

To get pH , we need to first find the concentration of HYDROXIDE (it's directly relatable to hydronium and $\mathrm{pH} . .$.)

$$
\begin{aligned}
& \frac{(x)(x)}{(0.100-x)}=1.8 \times 10^{-5} \\
& \frac{x^{2}}{0.100-x}=1.8 \times 10^{-5}
\end{aligned}
$$

Assume $x \ll 0.100$, so

$$
0.100-x=0.100
$$

$$
\begin{aligned}
& \frac{x^{2}}{0.100}=1.8 \times 10^{-s} \\
& x=0.0013416408=\left[\mathrm{OH}^{-}\right] \\
& p O H=2.87 \\
& p H=11.13 \quad
\end{aligned} \quad \mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right] \quad \mathrm{pH}+\mathrm{pH}=14.00
$$

(Solving this with the quadratic equation gives a pH of 11.13)

Compare pH to the pH of an 0.100 M solution of the strong base NaOH :
$\mathrm{pH}_{\mathrm{INH}_{3}}=11.13$

$$
\begin{aligned}
& \mathrm{NaOH} \rightarrow \mathrm{Na}^{+}+\mathrm{OH}^{-} \\
& \text {So, } 0.120 \mathrm{M} \mathrm{NaOH},\left[\mathrm{OH}^{-}\right]=0.100 \\
& P O H=-\log _{10}[0,100)=1,00 \\
& p H=14.00-1.00=13.00
\end{aligned}
$$

The stronger the base:

- the higher the pH will be for a solution of given concentration
- the higher the HYDROXIDE concentration (compared to the nominal base concentration)
${ }^{147}$ Find the pH and the degree of ionization for an 0.10 M solution of formic acid: HCHO 2

$$
\begin{aligned}
& \mathrm{HCHO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{CHO}_{2}^{-} \quad \mathrm{Ka}_{\mathrm{a}}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{CHO}_{2}^{-}\right]}{\left[\mathrm{HCHO}_{2}\right]}=1.7 \times 10^{-4^{-} \mathrm{Ka} \text { from page }} \begin{array}{l}
\text { A-13 in E\&G } \\
\text { textbook... }
\end{array}
\end{aligned}
$$

Species	[Initial]	Δ	EEqullbrium]
$\mathrm{H}_{3} \mathrm{O}^{+}$	O	$+X$	X
CHO_{2}^{-}	O	$+X$	X
HCHO_{2}	0.10	$-X$	$0.10-X$

Let "x" equal the increase in hydronium ion concentration...

$$
\begin{aligned}
& \frac{(x)(x)}{(0.10-x)}=1.7 \times 10^{-4} \\
& \frac{x^{2}}{0.10-x}=1.7 \times 10^{-4} \\
& \downarrow 0.10-x=0.10 \\
& \frac{x^{2}}{0.10}=1.7 \times 10^{-4}
\end{aligned}
$$

$$
\begin{aligned}
& x=0.0041231056=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \\
& p H=2.38
\end{aligned}
$$

On the next page, weill find the degree of ionization...

