CHEMICAL CALCULATIONS WITH THE GAS LAWS

$$
\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{uq})+2 \mathrm{NaHCO}_{3}(\mathrm{~s}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+2 \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{Na}_{2} \mathrm{SO}_{4}\left(\mathrm{a}_{4}\right)
$$

Given 25.0 g of sodium bicarbonate and sufficient sulfuric acid, what volume of carbon dioxide gas would be produced at 25.0 C and 0.950 atm pressure?
1 - Convert 25.0 grams of sodium bicarbonate to moles. Use FORMULA WEIGHT.
2 - Convert moles sodium bicarbonate to moles carbon dioxide. Use CHEMICAL EQUATION.
3 - Convert moles carbon dioxide to volume. Use IDEAL GAS EQUATION (PV=nRT)

$$
\begin{aligned}
& \text { (1) } 84.007 \mathrm{~g} \mathrm{NaHCO}_{3}=\mathrm{mol} \mathrm{NaHCO} \mathrm{Na}_{3} \text { (2) } 2 \mathrm{~mol} \mathrm{NaHCO}=2 \mathrm{~mol} \mathrm{CO}_{2} \\
& 25.0 \mathrm{gNaHCO}_{3} \times \frac{\mathrm{mol} \mathrm{NaHCO}}{84.007 \mathrm{~g} \mathrm{NaHCO}_{3}} \times \frac{2 \mathrm{~mol} \mathrm{CO}_{2}}{2 \mathrm{molNaHCO}_{3}}=0.2975542481 \mathrm{~mol} \mathrm{CO} 2
\end{aligned}
$$

(3)

$$
\begin{aligned}
P V & =n R T \\
V & =\frac{n R T}{P} \left\lvert\, \begin{array}{l}
n=0.2975942481 \mathrm{~mol} \mathrm{CO}_{2} \quad P=0.950 \mathrm{~atm} \\
R=0.08206 \frac{\mathrm{Loath}}{\mathrm{~mol} \cdot \mathrm{~K}} \\
V=25.0^{\circ} \mathrm{C}=298.2 \mathrm{~K}
\end{array}\right. \\
V & \left.=\frac{\left(0.2975942481 \mathrm{~mol}\left(0_{2}\right)(0.08206 \mathrm{~L} \cdot \mathrm{~atm}\right.}{\mathrm{mol} \mathrm{\cdot K}}\right)(298.2 \mathrm{~K}) \\
& =7.6 .950 \mathrm{~atm})
\end{aligned}
$$

144
What volume would the gas in the last example problem have at STP?
STP: "Standard Temperature and Pressure" (0 C and 1 atm)

$$
\begin{array}{l|ll}
\hline \frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{1}} & \begin{array}{ll}
P_{1}=0.980 \mathrm{~atm} & P_{2}=1 \mathrm{artm} \\
V_{1}=2.67 \mathrm{~L} & V_{2}=? \\
T_{1}=298.2 \mathrm{~K} & T_{2}=00 \mathrm{~L}=273.2 \mathrm{~K} \\
\frac{(0.580 \mathrm{~atm})(7.67 \mathrm{~L})}{(298.2 \mathrm{~K})}=\frac{(1 \mathrm{atim})\left(V_{2}\right)}{(273.2 \mathrm{~K})} ; V_{2}=6.67 \mathrm{Lat} 5 T P
\end{array}
\end{array}
$$

$$
\begin{aligned}
& \text { Alternate solution ... use } \mathrm{PV}=\mathrm{nRT} \\
& V=n R_{1} T \mid n=0.297 \delta^{5} 442481 \mathrm{molCO} \mathrm{~m}_{2} \quad T=223.2 \mathrm{~K} \\
& p=1 c_{1}+m \\
& V=\frac{\left(0.2975942481 \mathrm{~mol}\left(\mathrm{O}_{2}\right)\left(0.08206 \frac{\mathrm{l} \cdot \mathrm{coth}}{\mathrm{molth}}\right)(273.2 \mathrm{k})\right.}{(1 \mathrm{atmr})} \\
& =6,67 \mathrm{~L} \text { at } \delta T P
\end{aligned}
$$

REAL GASES

- The empirical gas laws (including the ideal gas equation) do not always apply.
- The gas laws don't apply in situations where the assumptions made by kinetic theory are not valid.
- When would it be FALSE that the space between gas molecules is much larger than the molecules themselves?
- at high pressure, molecules would be much closer together!
- When would it be FALSE that attractive and repulsive forces would be negligible?
- at high pressure, attractions and repulsions should be stronger!
- at low temperature, attractions and repulsions have a more significant affect on the paths of molecules
fast (high T)
slow (low T)

-The gas laws are highly inaccurate near the point where a gas changes to liquid!
- In general, the lower the pressure and the higher the temperature, the more IDEAL a gas behaves.
van der Walls equation
- an attempt to modify PV = RT to account for several facts.
- gas molecules actually have SIZE (they take up space)
- attractive and repulsive forces

$$
\begin{aligned}
& P V=n R T] \text { Jobeosasocution } \\
& (P+\underbrace{\left.\frac{n^{2} a}{V^{2}}\right)}_{L}(V-n b)=n R T] \begin{array}{l}
\text { attempts to account for molecular size Waal } \\
\text { equation }
\end{array}
\end{aligned}
$$

* "a" and "b" are experimentally determined parameters that are different for each gas. p 208
He: $a=0,0346, b=0,0238$ tiny, no special attractive forces
$\mathrm{H}_{2} \mathrm{O} \cdot a=5.537, b=0.03049$ small, but strong attractions between molecules
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}:-a=12.56 \quad b=0,08710 \begin{aligned} & \text { larger, and strong attractions between } \\ & \text { molecules }\end{aligned}$
$250 \overline{0} \mathrm{~L}$ of chlorine gas at 25.0 C and 1.00 atm are used to make hydrochloric acid. How many kilograms of hydrochloric acid could be produced if all the chlorine reacts?

$$
\mathrm{H}_{2}+\mathrm{Cl}_{2} \rightarrow 2 \mathrm{HCl}
$$

1 - Convert 2500 L chlorine gas to moles. Use IDEAL GAS EQUATION, PV=nRT
2 - Convert moles chlorine gas to moles HCl . Use CHEMICAL EQUATION.
3 - Convert moles HCl to mass. Use FORMULA WEIGHT.
(1)

$$
\begin{aligned}
& P V=n R T \left\lvert\, P=1.00 \mathrm{~atm} \quad R=0.08206 \frac{\mathrm{Loatm}}{\mathrm{~mol} \cdot \mathrm{~K}}\right. \\
& \left.n=\frac{P V}{R T} \right\rvert\, V=2500 \mathrm{~L} \\
& n_{\mathrm{Cl}_{2}}=\frac{(1.00 \mathrm{~atm})(2500 \mathrm{~L})}{\left(0.08206 \frac{\mathrm{Loatm}}{\text { mol .k }}\right)(298.2 \mathrm{~K})}=298.2 \mathrm{~K}
\end{aligned}
$$

(2) $\mathrm{molll} l_{2}=2 \mathrm{molHCl}$ (3) $\mathrm{HCl}-\mathrm{Hi}_{i} 1 \times 1.00 \mathrm{~m}^{2}$

$$
\frac{G: 1 \times 35.45}{36.458 \mathrm{~g}} \mathrm{HCl}=\mathrm{mol} H C 1
$$

$$
102.1646 \% 83 \mathrm{~mol} \mathrm{Cl} 2 \times \frac{2 \mathrm{molHCl}}{\mathrm{~mol} \mathrm{Cl}} 2 \mathrm{36.488gHcl}=7450 \mathrm{~g} \mathrm{HCl}
$$

$36.458 \mathrm{gHCl}=\mathrm{mol}$
$\frac{2 \mathrm{molHCl}}{\mathrm{molCl}} \times \frac{36.488 \mathrm{gHCl}}{\mathrm{molHCl}}$
Convert final answer to kg (specified in problem): $k y=103$

$$
2450 \mathrm{~g} \times \frac{\mathrm{kg}}{10^{3} \mathrm{~g}}=7.45 \mathrm{~kg} \mathrm{Hcl}
$$

