102 Example:
How many milliliters of 6.00 M hydrochloric acid is needed to completely react with 25.0 g of sodium carbonate?

$$
2 \mathrm{HCl}(\mathrm{aq})+\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{~s}) \longrightarrow \mathrm{H}_{2} \mathrm{O}(l)+\left(\mathrm{O}_{2}(\mathrm{~g})+2 \mathrm{NaC}\right)(\mathrm{aq})
$$

1- Convert 25.0 g sodium carbonate to moles. Use FORMULA WEIGHT.
2 - Convert moles sodium carbonate to moles HCI. Use CHEMICAL EQUATION.
3 - Convert moles MCI to volume solution. Use MOLARITY (6.00 M)

$$
\begin{aligned}
& \text { (3) } 6.00 \mathrm{mHCl} \longrightarrow 6.00 \mathrm{~mol} \mathrm{HCl}=\mathrm{L} \\
& 0.4717426172 \mathrm{~mol} \mathrm{HCl} \times \frac{L}{6.00 \mathrm{~mol} \mathrm{HCl}}=0,0786 \mathrm{~L} \mathrm{of} 6.00 \mathrm{~m} \mathrm{HCl}
\end{aligned}
$$

The problem wants the final answer in mL , so weill do a quick unit conversion.

$$
0.0786 \mathrm{~L} \times \frac{\mathrm{mL}}{10^{-3} \mathrm{~L}}=78.6 \mathrm{~mL} \text { of } 6.00 \mathrm{~m} \mathrm{HCl}
$$

103

$$
\begin{aligned}
& 42.081 \mathrm{~g} / \mathrm{mol} \\
& \text { S3,064 } 91 \mathrm{mul} \\
& 4 \mathrm{C}_{3} \mathrm{H}_{6}+6 \mathrm{NO} \longrightarrow 4 \mathrm{C}_{3} \mathrm{H}_{3} \mathrm{~N}+6 \mathrm{H}_{2} \mathrm{O}+\mathrm{N}_{2} \\
& \text { propylene } \\
& \text { acrylonitrile }
\end{aligned}
$$

Calculate how many grams of acrylonitrile could be obtained from 651 g of propylene, assuming there is excess NO present.
1 - Convert 651 g propylene to moles. Use FORMULA WEIGHT.
2 - Convert moles propylene to moles acrylonitrile. Use CHEMICAL EQUATION
3 - Convert moles acrylonitrile to mass. Use FORMULA WEIGHT.
(1) $42.081 \mathrm{gC}_{3} \mathrm{H}_{6}=\mathrm{mol} \mathrm{C}_{3} \mathrm{H}_{6}$ (2) $4 \mathrm{~mol}_{3} \mathrm{H}_{6}=4 \mathrm{~mol}_{3} \mathrm{H}_{3} \mathrm{~N}$
(3) $53.064 \mathrm{~g} \mathrm{C}_{3} \mathrm{H}_{3} \mathrm{~N}=\mathrm{mol}_{3} \mathrm{H}_{3} \mathrm{~N}$

$$
\begin{equation*}
6 \mathrm{SIgC}_{3} \mathrm{H}_{6} \times \frac{\mathrm{mol}_{3} \mathrm{H}_{6}}{42.081 \mathrm{~g} \mathrm{C}_{3} \mathrm{H}_{6}} \times \frac{4 \mathrm{~mol}_{3} \mathrm{H}_{3} \mathrm{~N}}{4 \mathrm{~mol}_{3} \mathrm{H}_{6}} \times \frac{53.064_{\mathrm{gl}}^{3} \mathrm{H}_{3} \mathrm{~N}}{\mathrm{~mol} \mathrm{C}_{3} \mathrm{H}_{3} \mathrm{~N}}=821_{9} \mathrm{C}_{3} \mathrm{H}_{3} \mathrm{~N} \tag{1}
\end{equation*}
$$

(3)

104

$$
\begin{aligned}
& \text { IS1.90 g/ mol } \\
& 10 \mathrm{FeSO}_{4}+2 \mathrm{KMnO}_{4}+8 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow 5 \mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}+2 \mathrm{mnSO}_{4}+\mathrm{K}_{2} \mathrm{SO}_{4} \\
&+8 \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

How many mL of 0.250 M potassium permanganate are needed to react with 3.36 g of iron(II) sulfate?
1 - Convert 3.36 grams iron(II) sulfate to moles. Use FORMULA WEIGHT.
2 - Convert moles iron(II) sulfate to moles potassium permangenate. Use CHEMICAL EQUATION.
3 - Convert moles potassium permanganate to volume solution. Use MOLARITY. (0.250 M)

$$
\begin{aligned}
& \text { (1) } 151.90 \mathrm{~g} \mathrm{FeSO}_{4}=\mathrm{mol} \mathrm{FeSO}_{4} \text { (2) } 10 \mathrm{~mol} \mathrm{FeSO}_{4}=2 \mathrm{~mol} \mathrm{KMnO}_{4} \\
& \text { (3) } 0.250 \mathrm{~mol} \mathrm{~K}_{4 n O_{4}}=L \\
& 3.36 \mathrm{~g} \mathrm{FeSO}_{4} \times \frac{\mathrm{mol} \mathrm{FeSO}_{4}}{151.90 \mathrm{~g} \mathrm{FeSO}_{4}} \times \frac{2 \mathrm{~mol} \mathrm{~K}_{n n} \mathrm{~m}_{4}}{10 \mathrm{~mol} \mathrm{FeSO}_{4}} \times \frac{\mathrm{L}}{0.250 \mathrm{mbl}_{\mathrm{mm} \mathrm{mO}_{4}}}=0.0177 \mathrm{~L}
\end{aligned}
$$

We want the answer in mL , so we'll do a unit conversion.

$$
\begin{gathered}
m L=10^{-3} \mathrm{~L} \\
0.0177 \mathrm{~L} \times \frac{m \mathrm{~L}}{10^{-3} \mathrm{~L}}=17.7 \mathrm{~mL} \circ \mathrm{~F} 0.250 \mathrm{mKMnO}_{4}
\end{gathered}
$$

CONCEPT OF LIMITING REACTANT

- When does a chemical reaction STOP?

- When does this reaction stop? When burned in open air, this reaction stops when all the MAGNESIUM STRIP is gone. We say that the magnesium is LIMITING.
- This reaction is controlled by the amount of available magnesium
- At the end of a chemical reaction, the LIMITING REACTANT will be completely consumed but there may be amount of OTHER reactants remaining. We do chemical calculations in part to minimize these "leftovers".

[^0]LIMITING REACTANT CALCULATIONS

- To find the limiting reactant, calculate how much product would be produced from ALL given reactants. Whichever produces the SMALLEST amount of product is the limiting reactant, and the smallest anount of product is the actual amount of product produced.
Example:

$$
\xrightarrow{56.08}
$$

If you start with 100. g of each reactant, how much calcium carbide would be produced?

$$
\begin{aligned}
& \text { (1) } 56.08 \mathrm{~g} \mathrm{CaO}=\mathrm{mol} \mathrm{CaO}^{(2)} \mathrm{mol} \mathrm{CaO}=\mathrm{mol} \mathrm{CaCl}_{2} \text { (3) } 64.10 \mathrm{glal} \mathrm{Ca}_{2}=\mathrm{mol} \mathrm{Cal}_{2}
\end{aligned}
$$

(1) $12.01 \mathrm{gl}=\mathrm{moll}$ (2) $3 \mathrm{moll}=1 \mathrm{~mol} \mathrm{CaCl}_{2}$ (3) $64,10 \mathrm{~g} \mathrm{Cal}_{2}=1 \mathrm{~mol} \mathrm{CaCl}_{2}$

$$
100 . \mathrm{gl} \times \frac{\mathrm{moll}}{12.01 \mathrm{gl}} \times \frac{\mathrm{mol} \mathrm{lal}_{2}}{3 \mathrm{moll}} \times \frac{64.10 \mathrm{glal}}{\mathrm{mollal}_{2}}=178 \mathrm{~g} \mathrm{l}_{4} \mathrm{l}_{2}
$$

The reaction stops when 114 grams of calcium carbide are produced. We have leftover carbon, but no more calcium carbide can be produced because the GaO has run out! (GaO is limiting, C is present in excess).

PERCENT YIELD

- Chemical reactions do not always go to completion! Things may happen that prevent the conversion of reactants to the desired/expected product!
(1) SIDE REACTIONS:

$$
\mathrm{C}+\mathrm{O}_{2} \longrightarrow \mathrm{CO}_{2} \left\lvert\, \begin{aligned}
& \text { This reaction occurs when there is a large amount } \\
& \text { of oxygen available }
\end{aligned}\right.
$$

$$
2 \mathrm{C}+\mathrm{O}_{2} \longrightarrow 2 \mathrm{CO} \left\lvert\, \begin{aligned}
& \ldots \text { while this reaction is more favorable in low-oxygen } \\
& \text { environments! }
\end{aligned}\right.
$$

... so in a low-oxygen environment, you may produce less carbon dioxide than expected!
(2) TRANSFER AND OTHER LOSSES

- When isolating a product, losses may occur in the process. Example: filtering

- Reactions may reach an equilbrium between prodcuts and reactants. We'll talk more about this in CHM 111. The net results is that the reaction will appear to stop before all reactants have been consumed!
- All of these factors cause a chemical reaction to produce LESS product than calculated. For many reactions, this difference isn't significant. But for others, we need to report the PERCENT YIELD.

$$
\begin{gathered}
\text { PERCENT } \\
\text { YIELD }
\end{gathered}=\frac{\text { ACTUAL YIELD }}{\text { THEORETICAL YIELD }} \times 100 \%
$$

[^1]
[^0]: These are often called "excess" reactants, or reactants present "in excess"

[^1]: ... the percent yield of a reaction can never be greater than 100% due to conservation of mass! If you determine that a percent yield is greater than 100%, then you've made a mistake somewhere - either in a calculation or in the experiment itself!

