$$
2 \mathrm{~A}\left|(\mathrm{~s})+3 \mathrm{Br}_{2}(l) \longrightarrow 2 \mathrm{~A}\right| B r_{3}(\mathrm{~s})
$$

* Given that we have 25.0 g of liquid bromine, how many grams of aluminum would we need to react away all of the bromine?
(1) Convert grams of bromine to moles: Need formula weight

$$
\begin{gathered}
159.80 \mathrm{~g} r_{2}=\mathrm{mol} \mathrm{Br}_{2} \\
25.0 \mathrm{gBr} \times \frac{\mathrm{mol} \mathrm{Br}_{2}}{159.80 \mathrm{gr}} 2
\end{gathered}
$$

(2) Use the chemical equation to relate moles of bromine to moles of aluminum

$$
\begin{aligned}
2 \mathrm{~mol} A 1 & =3 \mathrm{~mol} B r_{2} \\
0.15645 \mathrm{~mol} \mathrm{Br}_{2} & \times \frac{2 \mathrm{~mol} A 1}{3 \mathrm{~mol} B_{2}}=0.10430 \mathrm{~mol} \mathrm{Al}
\end{aligned}
$$

(3) Convert moles aluminum to mass: Need formula weight A1:26.918

$$
\begin{aligned}
& 26.98 \mathrm{~g} \mathrm{Al}=\operatorname{molAl} \\
& 0.10430 \mathrm{~mol} \mathrm{Al} \times \frac{26.98 \mathrm{~g} \mathrm{Al}}{\operatorname{mol} \mathrm{Al}}=2.81 \mathrm{~g} \mathrm{Al}
\end{aligned}
$$

You can combine all three steps on one line if you like!

$$
\begin{aligned}
& \text { (1) } 159.80 \mathrm{~g} \mathrm{Br}_{2}=\mathrm{mol} \mathrm{Br}_{2} \\
& \text { (2) } 2 \text { mol } A l=3 \text { mol } B r_{2} \\
& \text { (3) } 26,98 \mathrm{gAl}=\mathrm{mol} \mathrm{Al}
\end{aligned}
$$

Things we can do:

| If we have ... | M... and we need ... | Use ... |
| :--- | :--- | :--- |
| MASS | MOLES | FORMULA WEIGHT |
| SOLUTION <br> VOLUME | MOLES | MOLAR |
| MOLES OF A |  | CONCETRATION |
| (MOLARITY) |  |  |

${ }_{101}$ Example:
How many milliliters of 6.00 M hydrochloric acid is needed to completely react with 25.0 g of sodium carbonate?

$$
=2 \mathrm{HCl}(\mathrm{aq})+\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{~s}) \longrightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\left(\mathrm{O}_{2}(\mathrm{~g})+2 \mathrm{NaC}\right)(\mathrm{aq})
$$

1-Convert 25.0 g of sodium carbonate to moles. Use FORMULA WEIGHT.
2 - Convert moles sodium carbonate to moles HCl . Use CHEMICAL EQUATİON
3 - Convert moles HCl to volume. Use MOLARITY ( 6.00 M )
(1)

$$
\begin{aligned}
\mathrm{Na}_{2} \mathrm{CO}_{3}- & \mathrm{Na}_{\mathrm{a}}: 2 \times 22.99 \\
\mathrm{c} & : 1 \times 12.01 \\
0 & : \frac{3 \times 16.00}{105.99 \mathrm{~g} \mathrm{Na} \mathrm{a}_{2} \mathrm{CO}_{3}}=\mathrm{mol}_{\mathrm{o}} \mathrm{Na}_{2} \mathrm{CO}_{3} \\
25.0 \mathrm{ONa} \mathrm{Na}_{2} \mathrm{CO} & \times \frac{\mathrm{mol} \mathrm{Na}_{2} \mathrm{CO}_{3}}{105.99 \mathrm{~g} \mathrm{Na}_{2} \mathrm{CO}_{3}}=0.2358713086 \mathrm{~mol} \mathrm{Na}
\end{aligned}
$$

(2) $2 \mathrm{molHCl}=\mathrm{molNa} \mathrm{CO}_{2}$

$$
0.2358713086 \mathrm{~mol}_{\mathrm{a}_{2} \mathrm{CO}_{3}} \times \frac{2 \mathrm{~mol} \mathrm{HCl}}{\mathrm{~mol} \mathrm{Na}_{2} \mathrm{CO}_{3}}=0.4717426172 \mathrm{~mol} \mathrm{HCl}
$$

${ }^{102}$ Example:
How many milliliters of 6.00 M hydrochloric acid is needed to completely react with 25.0 g of sodium carbonate?

$$
2 \mathrm{HCl}(\mathrm{aq})+\mathrm{Na}_{2} \mathrm{CO}_{3}(5) \longrightarrow \mathrm{H}_{2} \mathrm{O}(l)+\left(\mathrm{O}_{2}(y)+2 \mathrm{NaC}_{4}(\mathrm{aq})\right.
$$

1 - Convert 25.0 g of sodium carbonate to moles. Use FORMULA WEIGHT.
2 - Convert moles sodium carbonate to moles HCI. Use CHEMICAL EQUATION
3 - Convert moles HCl to volume. Use MOLARITY ( 6.00 M )
(3) $6.06 \mathrm{mHCl} \rightarrow 6.00 \mathrm{~mol} \mathrm{HCl}=L$

$$
0.4717426172 \mathrm{~mol} \mathrm{HCl} \times \frac{\mathrm{L}}{6.00 \mathrm{~mol} \mathrm{HCl}}=0.0786 \mathrm{~L} \text { of } 6.00 \mathrm{M} \mathrm{HCl}
$$

We already have the volume of HCl in liters, but the problem asks us for an answer in mL (probably because that's what we'd measure out in lab!). So do a quick unit conversion.

$$
m L=10^{-3} L
$$

$$
0.0786 \mathrm{~L} \times \frac{\mathrm{mL}}{10^{-3} \mathrm{~L}}=78.6 \mathrm{~mL} 0 F 6.00 \mathrm{M} \mathrm{HCl}
$$

103

$$
\begin{aligned}
& 42.081 \mathrm{~g} / \mathrm{mul} \\
& \text { S3,064 } 91 \mathrm{mul} \\
& 4 \mathrm{C}_{3} \mathrm{H}_{6}+6 \mathrm{NO} \longrightarrow 4 \mathrm{C}_{3} \mathrm{H}_{3} \mathrm{~N}+6 \mathrm{H}_{2} \mathrm{O}+\mathrm{N}_{2} \\
& \text { propylene } \\
& \text { acrylonitrile }
\end{aligned}
$$

Calculate how many grams of acrylonitrile could be obtained from 651 g of propylene, assuming there is excess NO present.
1 - Convert 651 g propylene to moles. Use FORMULA WEIGHT.
2 - Convert moles propylene to moles acrylonitrile. Use CHEMICAL EQUATION.
3 - Convert moles acrylonitrile to mass acrylonitrile. Use FORMULA WEIGHT.
(1) $42.081 \mathrm{gC}_{3} \mathrm{H}_{6}=\mathrm{mol} \mathrm{C}_{3} \mathrm{H}_{6}$
(2) $4 \mathrm{~mol}_{3} \mathrm{H}_{6}=4 \mathrm{molC}_{3} \mathrm{H}_{3} \mathrm{~N}$

$$
\begin{aligned}
& \text { (3) } 53.064 \mathrm{gC}_{3} \mathrm{H}_{3} \mathrm{~N}=\mathrm{molCl}_{3} \mathrm{H}_{3} \mathrm{~N} \\
& \begin{array}{r}
6 \mathrm{SI}_{9} \mathrm{C}_{3} \mathrm{H}_{6} \times \frac{\mathrm{mol}_{3} \mathrm{H}_{6}}{42.08 \mathrm{~g} \mathrm{C}_{3} \mathrm{H}_{6}} \times \frac{4 \mathrm{~mol}_{3} \mathrm{H}_{3} \mathrm{~N}}{4 \mathrm{~mol}_{3} \mathrm{H}_{6}} \times \frac{53.064 \mathrm{~g} \mathrm{C}_{3} \mathrm{H}_{3} \mathrm{~N}}{\mathrm{~mol} \mathrm{C}_{3} \mathrm{H}_{3} \mathrm{~N}}=\begin{array}{l}
821_{\mathrm{g}} \\
\text { (1) } \\
\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{~N}
\end{array} \\
\hline \text { (3) }
\end{array}
\end{aligned}
$$

104

$$
\begin{aligned}
& 1 \mathrm{SI} .90 \mathrm{~g} / \mathrm{mol} \\
& 10 \mathrm{FeSO}_{4}+2 \mathrm{KMnO}_{4}+8 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow 5 \mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}+2 \mathrm{mnSO}_{4}+\mathrm{K}_{2} \mathrm{SO}_{4} \\
&+8 \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

How many mL of 0.250 M potassium permanganate are needed to react with 3.36 g of iron(II) sulfate?
1 - Convert 3.36 g iron(II) sulfate to moles. Use FORMULA WEIGHT.
2 - Convert moles iron(II) sulfate to moles potassium permangenate. Use CHEMICAL EQUATION.
3 - Convert moles potassium permanganate to volume. Use MOLARITY ( 0.250 M )
(1) $151.90 \mathrm{~g} \mathrm{FeSO}_{4}=\mathrm{mol} \mathrm{FeSO}_{4}$ (2) $10 \mathrm{~mol} \mathrm{FeSO}_{4}=2 \mathrm{~mol} \mathrm{KMnO}_{4}$
(3) $0.250 \mathrm{MKMnO}_{4} \rightarrow 0,250 \mathrm{~mol}_{\mathrm{MOM}}^{4}-\mathrm{L}$

SInce the final answer should be in mL (what the problem asks for), do a quick unit conversion..

$$
0.01 \gg L \times \frac{m L}{10^{-3} \mathrm{~L}}=17.7 \mathrm{~mL} 60 \mathrm{~F} 0.250 \mathrm{mKMnO}
$$

