97

$$
M_{1} V_{1}=M_{2} V_{2} \ldots \text {... the "DILUTION EQUATION" }
$$

M_{1} = molarity of concentrated solution
$V_{1}=$ volume of concentrated solution
$M_{2}=$ molarity of dilute solution
$V_{2}=$ volume of dilute solution (total volume me, nut vol lime of added solvent.')
The volumes don't HAVE to be in liters, as long as you use the same volume UNIT for both volumes!
Example: Take the 0.500 M sodium sulfate we discussed in the previous example and dilute it to make 150 mL of 0.333 M solution. How many mL of the original solution will we need to dilute?

$$
\begin{array}{rlrl}
m_{1} V_{1} & =M_{2} V_{2} & M_{1}=0.500 \mathrm{M} & M_{2}=0.333 \mathrm{~m} \\
(0.500 \mathrm{~m}) V_{1} & =(.333 \mathrm{~m})(150 . \mathrm{mL}) & V_{1}=? & V_{2}=150 . \mathrm{mL} \\
V_{1} & =99.9 \mathrm{~mL} &
\end{array}
$$

Take 99.9 mL pf 0.500 M sodium sulfate, and add enough water to make 150 mL of solution!

CHEMICAL CALCULATIONS CONTINUED: REACTIONS

- Chemical reactions proceed on an ATOMIC basis, NOT a mass basis!
- To calculate with chemical reactions (ie. use chemical equations), we need everything in terms of ATOMS ... which means MOLES of atoms

$$
2 A\left|(s)+3 B r_{2}(l) \longrightarrow 2 A\right| B r_{3}(s)
$$

coefficients are in terms of atoms and molecules!

$$
\frac{2 \text { atoms } A \mid}{2 \text { mol } A \mid}=3 \text { molecules } B r_{2}=2 \text { mol } B r_{r_{2}}=2 \text { mulaunits } A \mid B B_{3}
$$

- To do chemical calculations, we need to:
- Relate the amount of substance we know (mass or volume) to a number of moles
- Relate the moles of one substance to the moles of another using the equation
- Convert the moles of the new substance to mass or volume as desired

