Accuracy and Precision

- two related concepts that you must understand when working with measured numbers!

Accuracy

- how close a measured number is to the CORRECT (or "true") value of what you are measuring
- "Is it right?"
- checked by comparing measurements against a STANDARD (a substance or object with known properties)

Precision

- how close a SET of measured numbers are to EACH OTHER
- "Can I reproduce this?"
- checked by repeated measurements

More on precison

Every measurement contains some amount of ERROR, or some amount of deviation from the true value of what is being measured.

RANDOM ERROR is the variability in a measurement that cannot be traced back to a single cause. Random errors cause measurements to fluctuate around the true value, but can be averaged out given enough measurements.

When reporting measurements, we want to indicate how much random error we think is present. How?

We'll go to the lab and measure the mass of a metal ring using an ANALYTICAL BALANCE:

Our classroom experiment: Results

Mass of ring (g)	
41.9371	41.9378
41.9380	41.9373
41.9375	41.9374
41.9374	
41.9379	
41.9379	
41.9376	
41.9380	
41.9375	
41.9375	
47.9379	

$$
\begin{aligned}
&(15 \text { measurements) } \\
& \text { Overall average } \\
& \bar{x}=41.93759333 \mathrm{~g} \\
&=41.9376 \mathrm{~g}
\end{aligned}
$$

CERTAIN DIGITS: Appear in nearly all repeats of the measurement

UNCERTAIN DIGITS: Vary.. Variation caused by estimation or other sources of random error.

When reading measurements from a scale, record all CERTAIN digits (read directly from scale) and one UNCERTAIN (or estimated) digit.

When using a digital device, record all the displayed digits.

Significant figures
SIGNIFICANT FIGURES are a way to indicate the amount of uncertainty in a measurement.

The significant figures in a measurement are all of the CERTAIN DIGITS plus one and only one UNCERTAIN (or estimated) DIGIT

$$
\begin{aligned}
& \text { Example: } \\
& \text { From our classroom experiment, }
\end{aligned}
$$

$$
41.9376 \mathrm{~g}
$$

This digit was estimated by the balance (it varied between measurements). This is an UNCERTAIN digit.

These digits were obtained in nearly all measurements of the ring. They are CERTAIN.

This is a SIX SIGNIFICANT FIGURE measurement!

When you read a measurement that someone has written using the significant figures convention, you can tell how precisely that measurement was made.

$$
\begin{aligned}
& 1.47(3) \mathrm{g} \pm 0.001 \\
& 2 \text { (1) } \mathrm{m} \pm 1 \\
& \begin{array}{l}
\text { This was measured to the nearest }+/-0.001 \mathrm{~g} \\
\text { The last digit i is always UNCERTAN (or estimated) }
\end{array} \\
& \begin{array}{l}
\text { Some other examples } \\
3.2076 \mathrm{~g}(\pm 0.0001 \mathrm{~g})
\end{array} \\
& 27.2(6) \mathrm{mg} \pm 0.01
\end{aligned}
$$

