We will use the method of dimensional analysis, sometimes called the factor-label method. ... or, the "drag and drop" method!

Dimensional analysis uses conversion factors to change between one unit and another

What's a conversion factor? A simple equality.
Example

$$
12 \mathrm{in}=1 \mathrm{ft}
$$

Conversion factors in metric
In the metric system, conversion factors between units may always be made from the metric prefixes!

$$
\left.\begin{aligned}
& \text { For example, "k ,lo-" means } 10^{3} \\
& k=10^{3} \\
& \text { so } \\
& \frac{k g}{}=10^{3} \mathrm{~g} \\
& \frac{K m}{}=10^{3} \mathrm{~m} \\
& K L=10^{3} \mathrm{~s} \\
& K L=10^{3} \mathrm{~L}
\end{aligned} \right\rvert\, \begin{aligned}
& \text { Just apply the } \\
& \text { prefix to the } \\
& \text { base unit! }
\end{aligned}
$$

How do we actually USE a conversion factor?

* Similar to...

If $X=2$, then

$$
\frac{x}{2}=1
$$

15.7S/EE-2 .. on TI-83

* This fraction equals one, so multiplying by it does not change the VALUE of the number, only its UNITS!

Convert 0.01893 kg to g

$$
\mathrm{Kg}=10^{3} \mathrm{~g}
$$

$$
0.01893 \mathrm{~kg} \times \frac{10^{3} \mathrm{~g}}{\mathrm{k} / \mathrm{g}}=18.93 \mathrm{~g}
$$

DRAG AND DROP

- Drag the part of the factor that contains the unit you want to get rid of (cancel out) to the BOTTOM.
- Then, drag the other half of the factor to the TOP

Convert 14500 mg to $\underline{\mathrm{kg}} \quad m g=10^{-3} \quad \quad \mathrm{~g} g=10 \frac{3}{g}$

$$
14500 \mathrm{~m} / \mathrm{g} \times \frac{10^{-3} \mathrm{~g}}{\mathrm{~m} / \mathrm{g}} \times \frac{\mathrm{kg}}{10^{3} \mathrm{~g}}=0.0145 \mathrm{~kg}
$$

$$
\begin{aligned}
& \text { Convert } 0.147 \mathrm{~cm}^{2} \text { to } \mathrm{m}^{2} \mathrm{~cm}^{-2}=10^{-2} \mathrm{~m} \\
& 0.147 \mathrm{~cm}^{2} \times \frac{10^{-2} \mathrm{~m}}{\mathrm{~cm}} \times \frac{10^{2} \mathrm{~m}}{\mathrm{~cm}}=\frac{1.47 \times 10^{* 5} \mathrm{~m}^{2}}{\left(0.0000147 \mathrm{~m}^{2}\right)}
\end{aligned}
$$

Tip: When making a factor from a prefix, do not use squared or cubed units as a base. Use a base without an exponent!

For squared or cubed units, apply each factor two (for squared) or three (for cubed) times. If you remember that

$$
C m^{2}=c m \times C m \quad \text { and }<m^{3}=c m \times c m \times C m
$$

... then it should make sense.
8.45 kg to $\mathrm{mg} \quad K g=10^{3} g \quad \mu g=10^{-6}$

$$
8.45 \mathrm{k} / \mathrm{g} \times \frac{10^{3} \mathrm{~g}}{\mathrm{k} / \mathrm{g}} \times \frac{\mathrm{\omega g}}{10^{-6} \mathrm{~g}}=\frac{8450000000 \mathrm{wg}}{\left(8.45 \times 10^{9} \mathrm{mg}\right)}
$$

$$
\begin{gathered}
88100 \mathrm{kHz} \text { to } \mathrm{MHz} \\
\mathrm{kHz}=10^{3} \mathrm{~Hz} \\
\mathrm{MHz}=10^{6} \mathrm{~Hz} \\
88100 \mathrm{kyz} \times \frac{10^{3} \mathrm{~Hz}}{\mathrm{KHz}} \times \frac{\mathrm{MHz}}{10^{6} \mathrm{~Hz}}=88.1 \mathrm{mHz}
\end{gathered}
$$

17
Convert 38.47 in to m , assuming $2.54 \mathrm{~cm}=1 \mathrm{in}$

$$
\begin{aligned}
& 2.54 \mathrm{~cm}=\ln \quad \mathrm{cm}=10^{-2} \mathrm{~m} \\
& 38.47 \mathrm{in} \times \frac{2.54 \mathrm{chn}}{i \mathrm{~h}} \times \frac{10^{-2} \mathrm{~m}}{\mathrm{~cm}}=0.9771 \mathrm{~m}
\end{aligned}
$$

Convert 12.48 km to in $2.54 \mathrm{~cm}=$ in $\quad \mathrm{cm}=10 \bar{m}^{2}$

$$
\begin{gathered}
k m=10^{3} \mathrm{~m} \\
12.48 \mathrm{k} / \mathrm{m} \times \frac{10^{3} \mathrm{~m}}{1 \times \mathrm{m}} \times \frac{\mathrm{cm}}{10^{-2} \mathrm{~m}} \times \frac{\mathrm{in}}{2.54 \mathrm{~cm}}=491300 \mathrm{in}
\end{gathered}
$$

