xx: NH4CI $\longrightarrow BH^+ + C [-]$ The salt dissociates completely! $K_{a} = \frac{[B][H_{3}0^{+}]}{[R_{H}t]}$ Acid ionization constant for BH⁺ $Kw = (K_{a,BH^{+}})(K_{b,B})$ 1.0×10-16

Find the pH for salt solutions just like you would find pH for any other weak acid or weak base solutions. Only trick is to find out whether the salt is actually acidic or basic!

$$K_{a} = [NH_{3}][H_{3}0^{+}] = ?$$

$$K_{a} \times K_{b} = |.0 \times 10^{-14}$$

$$K_{a} \times K_{b} = |.0 \times 10^{-14}$$

$$K_{a} \times K_{b} = |.0 \times 10^{-14}$$

156	$NH_{4}^{+} + H_{2} \longrightarrow NH_{3}^{+} + H_{3} O^{+} K_{a} = ENH_{3} EH_{3} O^{+} - S_{2} S(x/0^{-10})$								
	Set up and solve this equilibrium like any other weak acid $\sum \mathcal{N} H_4^+$								
	Species	[Initial]	\triangle	[Equilibrium]	Let "x" equal the change				
	NH3	0	+×	X	in ammonia concentration				
	H30+	Ø	+χ	Х					
	NHyt	0.100	$-\chi$	0.100-X					
	(*)(*	$\frac{1}{2} = 5,50$	5x10	,-10 X=7.454	$x = 7.45 \times 10^{-6} M = [H_30^+]$ $pH = -10g_{10}(7.45 \times 10^{-6})$ pH = 5.13				
	(0,10	(X – V)		pH=-log					
	X 0.	$\frac{2}{100-\chi} = 5.56$	×10	-10 pH= 5					
	- X O	$\frac{1}{2} \times \frac{1}{2} \times \frac{1}$	20, 10 ⁻¹	For comparis pH = 1.00 for pH = 2.17 for pH = 7.00 for	For comparison, pH =1.00 for a strong acid like HCl pH = 2.17 for 0.10 M nitrous acid pH = 7.00 for distilled water				

¹⁵⁷ O.100 M Na(2H₃0₂, Find PH
Na(2H₃0₂
$$\rightarrow$$
 Na⁺ + (2H₃0₂⁻)
Na(2H₃0₂, \neg Na⁺ + (2H₃0₂⁻) Look at the IONS to find whether the sodium
Na⁺: Cannot be a B-L acid, since it has no "H" to donate. Since it has a positive
charge, it's not likely to be a base, either!
(2H₃0₂; (2H₃0₂ + H₂0 = H(2H₃0₂ + 0H⁻)
(2H₃0₂; (2H₃0₂ + H₂0 = H(2H₃0₂ + 0H⁻); K_b = [H(2H₃0_2)E(0H⁻)]
We need a value for Kb for the acetate ion. But it's not in
our chart. However, we DO find the value for Ka of acetic acid
on page A-13. Convert ...
K_a × K_b = 1+0 × 10⁻¹⁴
(1-7 × 10⁻⁵) K_b = 1+0 × 10⁻¹⁴
K_b = 5.66 × 10⁻¹⁰

$X = 7.67 \times 10^{-6} M = COH^{-3}$ $POH = -log_{10} (7.67 \times 10^{-6})$ $POH = 5.12$ $PH + POH = 14.00$ $PH = 14.00 - 5.12$ $PH = 14.00 - 5.12$			

For comparison:

0.100 M sodium acetate, pH = 8.88

0.100 M ammonia, pH = 11.13

0.100 M NaOH (strong base), pH = 13.00

The acetate ion is basic, but it's a very weak base!

$$O.100 M NaCl, Find pH$$

 $NaCl \rightarrow Na^+ + Cl^-$

To find out if NaCl is acidic, basic, or neutral ... look at the ions.

Na⁺, Can't be a B-L acid, as it has no "H" to donate. The sodium ion's positive change makes it unlikely to be a proton acceptor. We expect sodium ion to be neutral.

$$C[-: C[-+H_20] \rightarrow HC[+OH-?]$$

160

Hydrochloric acid is STRONG (completely ionized), so we don't expect chloride ion to be able to hold on to a proton and function as a base in water. Chloride ion should also be neutral.

So if both sodium ion and chloride ion are neutral, what sets the pH of a 0.100 M NaCl solution?

The water equilibrium itself will control pH here, and the pH will be 7.00

¹⁶¹ POLYPROTIC ACIDS

... what's special about phosphoric acid?

 $K_{a1} = 6.9 \times 10^{-3}$ $K_{a2} = 6.2 \times 10^{-8}$ $K_{a3} = 4.8 \times 10^{-13}$

(1)
$$H_3 PO_4 + H_2 O \rightleftharpoons H_2 PO_4^- + H_3 O^+$$

(2) $H_2 PO_4^- + H_2 O \rightleftharpoons H PO_4^{2-} + H_3 O^+$
(3) $H PO_4^{2-} + H_2 O \rightleftharpoons PO_4^{3-} + H_3 O^+$

Phosphoric acid has THREE acidic protons!

The first dissocation is dominant here, and for simple calculations of phosphoric acid in water, we will simply use the first ionization and ignore the other two.

Remember: This is a weak acid. It exists in water mostly as undissociated phosphoric acid molecules.

Solve the equilibrium of phosphoric acid's FIRST proton:

$$H_3PO_4 + H_2O \rightleftharpoons H_2PO_4^- + H_3O^+; K_a = 6.9 \times 10^{-3}$$

$$K_{c} = \frac{[H_2P0_{4}][H_30^{7}]}{[H_3P0_{4}]} = 6.9 \times 10^{-3}$$

Species	[Initial]	\triangle	(Equilibrium)
the Poy-	0	$+\chi$	X
K30t	0	$+\chi$	X
H3POY	0.10	$-\chi$	0,10 - X

$$\frac{\chi^{2}}{0.10 - \chi} = 6.9 \times 10^{-3}$$

$$\int_{0.10 - \chi}^{0.50me} \chi (200,10)$$

$$\int_{0.10}^{0.10 - \chi} 0.10$$

$$\frac{\chi^{2}}{0.10} = 6.9 \times 10^{-3}$$

$$\chi = 0.0262678511 = [H_{3}0f]$$

⁶³ Find the pH of a solution prepared by dissolving 3.00 g of ammonium nitrate (FW=80.052 g/mol) solid into enough water to make 250. mL of solution.

What's the nature of ammonium nitrate? $NH_{4}NV_{3} \rightarrow NH_{4} + NO_{3}^{-1}$ NO_{3}^{-1} ; $NO_{3}^{-1} + H_{2}O \rightleftharpoons HNV_{3} + OH^{-1} <- \text{NITRIC ACID is a strong acid, so the nitrate ion should be NEUTRAL$ $<math>NH_{4}^{+1}$; $NH_{4}^{+1} + H_{2}O \rightleftharpoons NH_{3}^{+1} + H_{3}O^{+1} <- \text{AMMONIA is a weak base, so the ammonium ion should be ACIDIC!}$ $NH_{4}^{+1} + H_{2}O \rightleftharpoons NH_{3}^{+1} + H_{3}O^{+1} <- \text{AMMONIA is a weak base, so the ammonium ion should be ACIDIC!}$ $NH_{4}^{+1} + H_{2}O \rightleftharpoons NH_{3}^{+1} + H_{3}O^{+1} <- \text{AMMONIA is a weak base, so the attraction should be ACIDIC!}$ $NH_{4}^{+1} + H_{2}O \rightleftharpoons NH_{3}^{+1} + H_{3}O^{+1} <- \text{AMMONIA is a weak base, so the attraction should be ACIDIC!}$ $NH_{4}^{+1} + H_{2}O \rightleftharpoons NH_{3}^{+1} + H_{3}O^{+1} <- \text{AMMONIA is a weak base, so the attraction should be ACIDIC!}$ $NH_{4}^{+1} + H_{2}O \rightleftharpoons NH_{3}^{+1} + H_{3}O^{+1} <- \text{AMMONIA is a weak base, so the attraction should be ACIDIC!}$ $NH_{4}^{+1} + H_{2}O \rightleftharpoons NH_{3}^{+1} + H_{3}O^{+1} <- \text{AMMONIA is a weak base, so the attraction should be ACIDIC!}$ $NH_{4}^{+1} + H_{2}O \rightleftharpoons NH_{3}^{+1} + H_{3}O^{+1} <- \text{AMMONIA is a weak base, so the attraction should be ACIDIC!}$ $NH_{4}^{+1} + H_{2}O \rightleftharpoons NH_{3}^{+1} + H_{3}O^{+1} <- \text{AMMONIA is a weak base, so the attraction should be ACIDIC!}$ $NH_{4}^{+1} + H_{2}O \rightleftharpoons NH_{3}^{+1} + H_{3}O^{+1} <- \text{AMMONIA is a weak base, so the attraction should be ACIDIC!}$ $NH_{4}^{+1} + H_{2}O \rightleftharpoons NH_{3}^{+1} + H_{3}O^{+1} <- \text{AMMONIA is a weak base, so the attraction should be ACIDIC!}$ $NH_{4}^{+1} + H_{2}O \rightleftharpoons NH_{3}^{+1} + H_{3}O^{+1} <- \text{AMMONIA is a weak base, so the attraction should be ACIDIC!}$ $NH_{4}^{+1} + H_{2}O \rightleftharpoons NH_{3}^{+1} + H_{3}O^{+1} - H_{3}O^{+1} + H_{3}O^{+1} - H_{3}O^{+1} + H_{3}O^{+1} - H_{3}O^{+1} + H_{3}O^{+1} +$

To solve the equilibrium problem, we need to find the nominal concentration of our ammonium nitrate.

$$\frac{80.052 \text{ g} \text{ NHy NO3} = \frac{100 \text{ NHy NO3}}{80.052 \text{ g} \text{ NHy NO3}} = \frac{100 \text{ NHy NO3}}{80.052 \text{ g} \text{ NHy NO3}} = 0.0374756408 \text{ mol NHy NO3}$$
$$\left[\text{NHy NO3} \right]_{\text{numinal}} = \frac{0.0374756408 \text{ mol NHy NO3}}{0.250 \text{ L}} = 0.1499025633 \text{ M} \text{ My NO3}$$

$$NH_{4}^{+} + H_{2}O \rightleftharpoons NH_{3} + H_{3}O +$$

 $K_{a} = \frac{CNH_{3}[H_{2}O^{+}]}{CNH_{4}^{+}]} = S.S6 \times 10^{-10}$

Species	[Initial]	<u>\</u>	[Gavilibrium]	
NH3	0	+X	×	
H30+	O	+X	×	
NHyt	0.14990	$-\chi$	0,14990-r	

Solve ...

$$\frac{\chi^{2}}{0.14990 - \chi} = 5.56 \times 10^{-10}$$

$$\frac{\chi^{2}}{\sqrt{\chi^{2} - 5.56 \times 10^{-10}}}$$

$$\frac{\chi^{2}}{0.14990} = 5.56 \times 10^{-10}$$

... seems reasonable for a weakly acidic salt at moderate concentration.