Exchange Chemistry

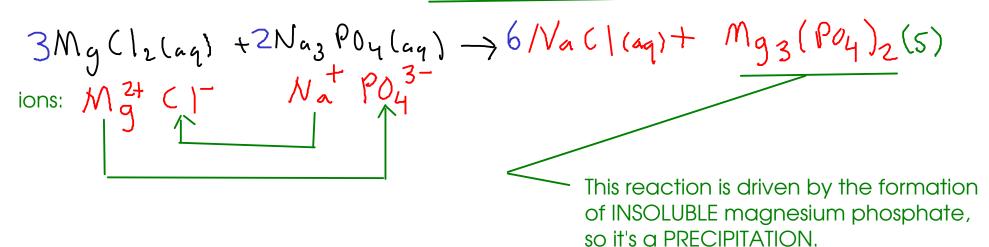
- Three kinds of exchange chemistry.

(1) PRECIPITATION Formation of IONIC SOLID

(2) ACID/BASE or NEUTRALIZATION

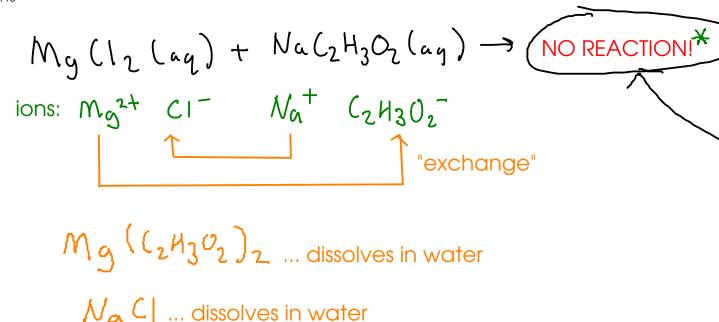
Formation of MOLECULES!

GAS FORMATION (formation of unstable molecules)


SOME (but not all) reactions that form gases
are examples of exchange chemistry.

Just because you mix together two ionic compounds does NOT mean that a reaction will occur. You need a DRIVING FORCE for a reaction.

117


PRECIPITATION REACTIONS

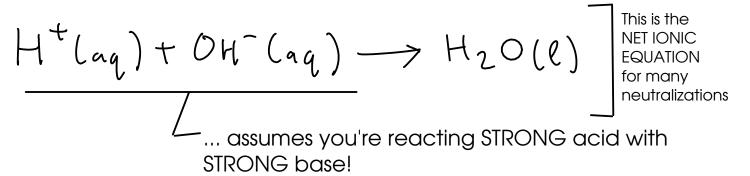
- driving force is the formation of an insoluble ionic compound.

When you're trying to complete a precipitation reaction:

- (1) Write the IONS that form when the reactants are dissolved.
- Make NEW compounds by pairing up cations with anions. Don't forget that the positive and negative charges must balance each other out!
- (3) Use the solubility rules to determine the PHASE of each new compound solid or aqueous.
- $\overline{(4)}$ Balance the overall equation.

So, no solid forms here. All possible combinations of these four ions result in compounds that dissolve readily in water.

$$m_g^{2+}Cl^-$$
 + $N_{0}^{+}C_{1}^{-}J_{02}^{-}$ $N_{0}^{+}C_{1}^{-}J_{02}^{-}$ NO CHANGE, therefore NO DRIVING FORCE, and NO REACTION


★ We will learn about other driving forces than the formation of solid, but these driving forces do not apply to this reaction

ACID/BASE REACTIONS (also called NEUTRALIZATION REACTIONS)

- There are several stable molecules that may be formed in double replacement reactions, but the most common is WATER!
- Double replacement reactions that form water are also called "neutralizations"

HA + BOH
$$\longrightarrow$$
 H₂O + BA acid base salt "HOH" ionic compound

* To make water (H_2O), you need a source of hydrogen ion (H^4) and hydroxide ion (OH^5)

ACIDS

- compounds that release hydrogen ion (H^{\flat}) , when dissolved in water.

Properties of acids:

- Corrosive: React with most metals to give off hydrogen gas
- Cause chemical burns on contact
- Taste sour (like citrus citric acid!)
- Changes litmus indicator to RED

BASES

- Substances that release hydroxide ion (OH*) when dissolved in water

Properties of bases:

- Caustic: Attack and dissolve organic matter (think lye, which is NaOH)
- Cause skin/eye damage on conţact
- Taste bitter
- changes litmus indicator to BLUE

Due to the dissolving action of base on your skin, bases will feel "slippery". The base ITSELF is not particularly slippery, but what's left of your skin IS!

ACID/BASE or NEUTRALIZATION reactions continued

- the driving force of these reactions is the formation of water molecules.

$$H^{+}(aq) + OH^{-}(aq) \longrightarrow H_{2}O(Q)$$
Net ionic equation

From the acid From the base

H2S04(ay) + 2NaOH(ay)
$$\longrightarrow$$
 2H2O(l) + Na2SO4(aq) ions: H+ SO4 \longrightarrow Na OH \longrightarrow

- How can this reaction be detected?
 - pH detector (indicator paper, etc.)
 - do the products have similar chemical properties to the reactants?
 - release of heat!

... formation of water is usually accompanied by a release of heat

GAS FORMATION / OTHER MOLECULES

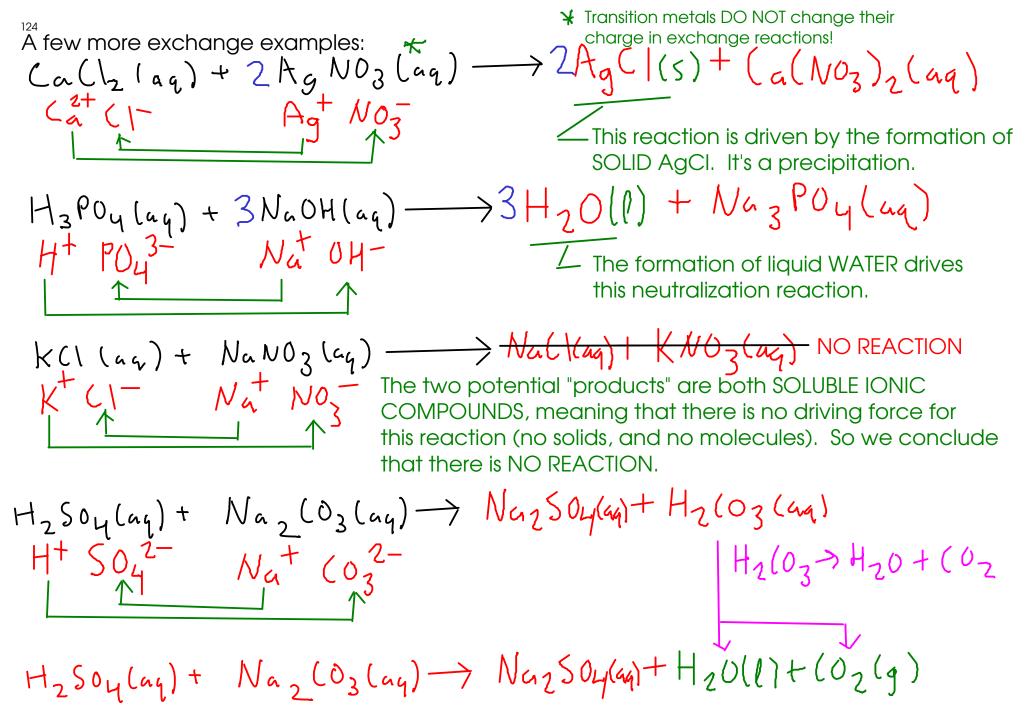
- There are a few other molecules that can be made with exchange-type chemistry.
- Most of these molecules are unstable and can break apart to form gases.
- Formation of a weak acid:
 - The formation of ANY weak acid in an exchange-type reaction can be a driving force.
 - Some weak acids are unstable and can break apart into gas molecules.

$$H_2(o_3 Lag) \longrightarrow H_2(l) + Co_2(g)$$
 Gas bubbles can leave solution!

... but how would you form carbonic acid in an exchange-type reaction?

$$H_2SO_4(a_4)+2NaH(O_3(a_4)) \rightarrow Na_2SO_4(a_4)+2H_2CO_3(a_4)$$
 $H^+SO_4^2-Na^+H(O_3^-)$

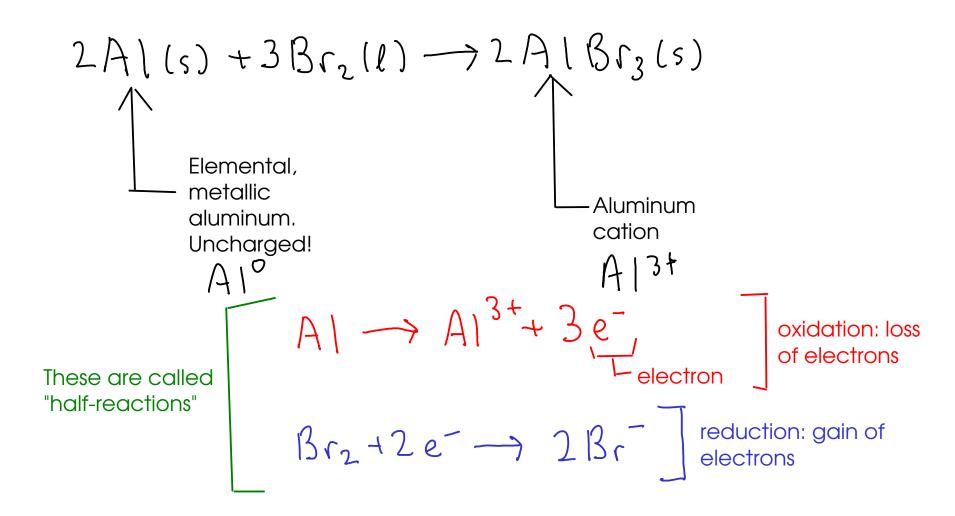
... but when we mix sulfuric acid and sodium bicarbonate, we observe BUBBLES. We need to write an equation that agrees with our observations. We know that carbonic acid decomposes, so we go ahead and put that into our equation.


$$H_2(o_3lag) \longrightarrow H_2O(l) + (o_2(g))$$

 $H_2So_4(ag) + 2NaH(o_3lag) \rightarrow Na_2So_4(ag) + 2H_2O(l) + 2(o_2(g))$

Other molecules of interest:

$$H_2$$
 SO $_3$: sulfurous acid - React an ACID with a SULFITE


$$H_2So_3(ag) \rightarrow H_2O(\ell) + So_2(g)$$

 H_2S hydrogen sulfide (gas) - React an ACID with a SULFIDE

This reaction is driven by the formation of molecular CARBONIC ACID, which immediately decomposes into water molecules and gaseous carbon dioxide.

- Exchange reactions involve ions pairing up, but the ions themseves are not formed in exchange reactions. Exchanges start with pre-existing ions.
- ... but the ions have to be produced somehow through a chemistry that involves the transfer of electrons.
 - oxidation / reduction chemistry ("redox" chemistry) involves transfer of electrons and can make ions.

- oxidation and reduction always occur together. In other words, we can't just make free electrons using oxidation without giving them somewhere to go.
- Many of the types of reactions that we learned about in previous courses are redox reactions!
 - COMBINATIONS (often but not always redox)
 - DECOMPOSITIONS (often redox)
 - SINGLE REPLACEMENT (always redox)

Cu (s) +2 Ag NO3 laq)
$$\rightarrow$$
 Cu (NO3)2 laq) + 2 Ag (s)

Cu \rightarrow Cu²⁺ + 2e⁻ oxidation

2 Ag + 2e⁻ \rightarrow 2 Ag (s) reduction

net ini(\rightarrow Cu(s) + 2 Ag + (uq) \rightarrow (u²⁺(ag) + 2 Ag (s))

-COMBUSTION

2 Mg (s) + O2(g) \rightarrow 2 Mg O(s)

2 Mg (s) \rightarrow 2 Mg²⁺ + 4e⁻ oxidation

O2 (y) + 4e⁻ \rightarrow 20²⁻ reduction

A review of the reaction types we just mentioned:

- Reactions that involve two or more simple substances COMBINING to form a SINGLE product
- Often involve large energy changes. Sometimes violent!

Example:

$$2A|(s)+3Br_2(l)\longrightarrow 2A|Br_3(s)$$

1 DECOMPOSITION REACTIONS

- Reactions where a SINGLE REACTANT breaks apart into several products

Example:

$$2 H_{1}O_{2}(e) \longrightarrow 2 H_{2}O(e) + O_{2}(g)$$

- * This reaction is NOT a combustion reaction, even though O₂ is involved!
- * Combustion reactions CONSUME O_2 , while this reaction PRODUCES O_2

COMBUSTION REACTIONS

- Reactions of substances with MOLECULAR OXYGEN (O_2) to form OXIDES.
- Combustion forms an OXIDE of EACH ELEMENT in the burned substance!

- Form:

$$AB + O_{2} \longrightarrow AO + BO$$

Oxide: a compound containing OXYGEN and one other element!

* Combustion of hydrocarbons makes carbon dioxide and water, if enough oxygen is present. In low-oxygen environments, carbon monoxide is made instead!

$$(3 + 8 + 9) + 502(9) \longrightarrow 4 + 20(9) + 3(02(9))$$

$$2mg(s) \leftarrow O_2(g) \longrightarrow 2mgO(s)$$

This reaction can also be called a combination! Two reactants form a single product.

SINGLE REPLACEMENT REACTIONS

- Reactions where one element REPLACES another element in a compound.
- Can be predicted via an ACTIVITY SERIES (p151, 9th edition) (p153, 10th ed)

- Form: A + BC — AC + B "A" and "B" are elements., often metals.

- Easy to spot, since there is an element "by itself" on each side of the equation.

Examples:
$$+1$$
 $\neq 2$ $\downarrow 3$ $\downarrow 4$ $\downarrow 2$ $\downarrow 3$ $\downarrow 4$ \downarrow

REDOX LANGUAGE

"oxidizer"

- "Oxidation" is loss of electrons, but an OXIDIZING AGENT is something that causes ANOTHER substance to lose electrons. An oxidizing agent is itself reduced during a redox reaction.
- "Reduction" is gain of electrons, but a REDUCING AGENT is something that causes ANOTHER substace to gain electrons. Reducing agents are themselves oxidized during a redox reaction.

$$2\cancel{A}(s) + 3\cancel{B}_{r_2}(l) \longrightarrow 2\cancel{A}(\cancel{B}_{r_3}(s))$$

Aluminum is OXIDIZED during this process. We say that metallic aluminum is a REDUCING AGENT!

Bromine is REDUCED during this process. We say that bromine is an OXIDIZING AGENT!

- * Strong oxidizers (oxidizing agents) can cause spontaneous fires if placed into contact with combustibles (safety issue!).
 - * Reactive metals tend to be REDUCING AGENTS, while oxygen-rich ions like NITRATES tend to be OXIDIZING AGENTS. HALOGENS (Group VIIA) also tend to be OXIDIZING AGENTS

END OF CHAPTER 4 MATERIAL