Compare:

- Weak acid HNO_{2} : pH of 0.10 M solution $=2.17$

Let's compare the pH of the weak nitrous acid with the pH of a strong acid like nitric acid:

$$
\begin{gathered}
0.10 \mathrm{mHNO} 3, \text { what is } \mathrm{pH}_{1} \text { ? } \\
\mathrm{HNO}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{NO}_{3}^{-} \\
\mathrm{O}, 10 \mathrm{MHNO}_{3},\left[\mathrm{H}_{3} \mathrm{O}_{3}^{+}\right]=0,10 \mathrm{~m} \\
\mathrm{pH}=1.00
\end{gathered}
$$

The stronger the acid:

- the lower the pH of a solution of given concentration will be
- the higher the concentration of hydronium ion (when compared to the nominal acid concentration)
${ }^{145}$ Consider an 0.100 M solution of the weak base ammonia:
$\mathrm{NH}_{3} j \mathrm{~K}_{b}=1.8 \times 10^{-5}\left(p \mathrm{~A}-14,6 b b i n g\right.$ g hb $\left.^{\mathrm{s}}\right)$
What is the pH ?

$$
\begin{aligned}
& \text { hat is the } \mathrm{pH} \text { ? } \\
& \mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NH}_{4}^{+}+\mathrm{OH}^{-} \mathrm{K} 6=\frac{\left[\mathrm{NH}_{4}^{+}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{NH}_{3}\right]}=1.8 \times 10^{-5}
\end{aligned}
$$

Species	[Initial]	Δ	[Equilibrium]
NH_{4}^{+}	0	$+X$	X
OH^{-}	0	$+X$	X
NH_{3}	0,100	$-X$	$0.100-X$

Let "x" equal the change in ammonium concentration...

$$
\begin{gathered}
\frac{(x)(x)}{(0.100-x)}=1.8 \times 10^{-5} \\
\frac{x^{2}}{0.100-x}=1.8 \times 10^{-5} \\
x^{x}<0.100,30 \\
0.100-x \approx 0.100 \\
\frac{x^{2}}{0.100}=1.8 \times 10^{-5}
\end{gathered}
$$

$$
\begin{aligned}
& x=0.0013416408=\left[0 H^{-}\right] \text {(see chart) } \\
& p O H=-\log (0.0013416408)=2.87 \\
& p H+p 0 H=14.00,50 \\
& p H+2.87=14.00 \\
& p H=11.13 \quad \begin{array}{l}
\text { If you'd solved the quadratic for } \\
\text { this one. ,oud have gotten } \\
p H=11.13 . . .
\end{array}
\end{aligned}
$$

Compare pH to the pH of an 0.100 M solution of the strong base NaOH :
$\mathrm{pH}_{\mathrm{INH}_{3}}=11.13$

$$
\begin{aligned}
& \mathrm{NaOH} \rightarrow \mathrm{Na}^{+}+\mathrm{OH}^{-} \\
& \text {So, } 0.120 \mathrm{M} \mathrm{NaOH},\left[\mathrm{OH}^{-}\right]=0.100 \\
& P O H=-\log _{10}[0,100)=1,00 \\
& p H=14.00-1.00=13.00
\end{aligned}
$$

The stronger the base:

- the higher the pH will be for a solution of given concentration
- the higher the HYDROXIDE concentration (compared to the nominal base concentration)
${ }^{144}$ Find the pH and the degree of ionization for an 0.10 M solution of formic acid: HCHO 2

$$
\mathrm{HCHO}_{2}+\mathrm{H}_{2} \mathrm{O} \stackrel{\mathrm{O}}{3} \mathrm{O}^{+}+\mathrm{CHO}_{2}^{-} \quad \mathrm{Ka}_{\mathrm{a}}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{CHO}_{2}^{-}\right]}{\left[\mathrm{HCHO}_{2}\right]}=1.7 \times 10^{-4^{\text {r }} \begin{array}{c}
\text { Ka from page } \\
\mathrm{A}-13 \mathrm{in} \mathrm{E} \mathrm{\& G} \\
\text { textbook... }
\end{array}}
$$

Species	[Initial]	Δ	$\left[E_{\text {quilibrium }}\right]$
$\mathrm{H}_{3} \mathrm{O}^{+}$	0	$+X$	X
CHO_{2}^{-}	0	$+X$	X
HCHO_{2}	0.10	$-x$	$0.10-x$

Let "x" equal the change in hydronium concentration ...

$$
\begin{gathered}
\frac{(x)(x)}{(0.10-x)}=1.7 \times 10^{-4} \\
\frac{x^{2}}{0.10-x}=1.7 \times 10^{-4} \\
\mid x \angle C 0.10,50 \\
0.10-x \simeq 0.10 \\
\frac{x^{2}}{0.10}=1.2 \times 10^{-4}
\end{gathered}
$$

$$
x=0.0041231056=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]
$$

$$
p H=2.38
$$

So the pH is $2.38 \ldots$ now what about degree of ionization?

$$
{ }^{168} \mathrm{HCHO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{t}+\mathrm{CHO}_{2}^{-}
$$

What is degree of ionization? The fraction of a weak aced or base that ionizes in solution.

$$
\begin{aligned}
& \text { DUI }=\frac{\left[\mathrm{CHO}_{2}^{-}\right]}{\left[\mathrm{HCHO}_{2}\right]_{\text {nominal }}}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}{\left[\mathrm{HCHO}_{2}\right] \text { nominal }} \\
& D O I=\frac{0.0041231056}{0.10}=0.041 \text { for } 0.10 \mathrm{MHCHO}
\end{aligned}
$$

Often, degree of ionization is expressed as a percentage ... called percent ionization:

$$
\begin{aligned}
& \% / 10 \text { anlzation }=\text { DUI } \times 100 \\
& 0 / 0 \text { ionization }=0.041 \times 100=4.16 / 6 \text { ionized }
\end{aligned}
$$

When you do Experiment 16A. By Le Chateleir's Principle, adding water to the equilibrium should force it to the right - meaning that more acid will ionize - even as the pH goes up!. Therefore, the degree of (or percent) ionization should INCREASES as the concentration of the acid DECREASES. Check this with your experiment 16A data on acetic acid.

149
An aqueous solution of 0.25 M trimethylamine has a pH of 11.63 . What's the experimental value of Kb ?

$$
\left(\left(\mathrm{H}_{3}\right)_{3} N\right.
$$

$$
\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons\left(\mathrm{CH}_{3}\right)_{3} \mathrm{NH}^{+}+\mathrm{OH}^{-} j \mathrm{~K}_{b}=\frac{\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{NH}^{+}\right]\left[\mathrm{OH}^{-}\right]}{\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}\right]}
$$

Species	[Initial]	Δ	[Equilibrium]
$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{NH}^{+}$	O	$+X$	X
$O H^{-}$	0	$+X$	X
$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}$	0.25	$-X$	$0.25-x$
$\frac{(X)(X)}{(O .25-X)}=K_{b}$			

$$
\frac{x^{2}}{0.25-x}=K b
$$

Since x represents hydroxide ion concentration, we can find "x' by looking at the pH .

$$
\begin{aligned}
& \mathrm{PH}+\mathrm{pOH}=14.00 \\
& 11.63+\mathrm{POH}=14.00
\end{aligned}
$$

150

$$
\begin{aligned}
& \mathrm{POH}=2.37 \\
& {\left[\mathrm{OH}^{-}\right]=10^{-2.37}=0.004265>952} \\
& x=0.0042657952
\end{aligned}
$$

Plug value of "x" into the expression we wrote for Kb...

$$
\begin{aligned}
& \frac{x^{2}}{0.25-x}=K b \\
& \frac{(0.0442657952)^{2}}{0.25-0.0042657952}=K_{b} \\
& 7.4 \times 10^{-5}=K_{b}
\end{aligned}
$$

