148
$250 \overline{0} \mathrm{~L}$ of chlorine gas at 25.0 C and 1.00 atm are used to make hydrochloric acid. How many kilograms of hydrochloric acid could be produced if all the chlorine reacts?

$$
\mathrm{H}_{2}+\mathrm{Cl}_{2} \rightarrow 2 \mathrm{HCl}
$$

1 - Convert 2500 L chlorine gas to moles. Use IDEAL GAS EQUATION.
2 - Convert moles chlorine gas to moles HCl . Use CHEMICAL EQUATION.
3 - Convert moles HCl to mass. Use FORMULA WEIGHT (and a unit conversion)

$$
\begin{aligned}
& \text { (1) } \\
& \begin{array}{l|ll}
P V & =M R T & P=1.00 \text { atm } \\
n=P V & R=0.08206 \frac{\mathrm{Latm}}{\mathrm{molok}}
\end{array} \\
& \left.n=\frac{P V}{R T} \right\rvert\, V=2500 \mathrm{~L} \quad T=25.0^{\circ} \mathrm{C}=298.2 \mathrm{~K} \\
& n_{C_{2}}=\frac{(1.00 \mathrm{~atm})(2500 \mathrm{~L})}{\left(0.08206 \frac{\mathrm{~L} \cdot \mathrm{utm}}{\mathrm{~mol} \cdot \mathrm{~K}}\right)(298.2 \mathrm{~K})}=102.1646983 \mathrm{~mol} \mathrm{Cl} \mathrm{Cl}_{2} \\
& \text { (2) } \mathrm{mol} \mathrm{Cl} 2=2 \mathrm{~mol} \mathrm{HCl} \text { (3) } 36.458 \mathrm{gHCl}=\mathrm{mol} \mathrm{HCl}
\end{aligned}
$$

$$
\begin{aligned}
& 102.1646983 \mathrm{~mol} \mathrm{Cl} 2 \times \frac{2 \mathrm{~mol} \mathrm{HCl}}{\mathrm{~mol} \mathrm{lal}_{2}} \times \frac{36.458 \mathrm{~g} \mathrm{HCl}}{\mathrm{~mol} \mathrm{HCl}}=7450 \mathrm{~g} \mathrm{HCl} \\
& \text { Convert answer to } \mathrm{kg} \ldots \mathrm{~kg}=10^{3} \mathrm{~g} \\
& 7450 \mathrm{gHCl} \times \frac{\mathrm{kg}}{10^{3} \mathrm{~g}}=7.45 \mathrm{kgHCl}
\end{aligned}
$$

149

$$
2 \mathrm{HCl}+\mathrm{Na}_{2} \mathrm{CO}_{3} \rightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}+2 \mathrm{NaCl}
$$

If 48.90 mL of 0.250 M HCl solution reacts with sodium carbonate to produce 50.0 mL of carbon dioxide gas at 290.2 K , what is the pressure of the carbon dioxide gas?
1- Convert 48.90 mL of HCL solution to moles using MOLARITY.
2- Convert moles HCl to moles carbon dioxide gas using CHEMICAL EQUATION
3 - Convert moles carbon dioxide to pressure. Use IDEAL GAS EQUATION.

$$
\begin{aligned}
& \text { (1) } 0.250 \mathrm{molHCl}=\mathrm{L} \quad \mathrm{~mL}=10^{-3} \mathrm{~L} \quad \text { (2) } 2 \mathrm{~mol} \mathrm{HCl}=\mathrm{mol} \mathrm{CO} \\
& 2 \\
& 48.90 \mathrm{~mL} \times \frac{10^{-3} \mathrm{~L}}{\mathrm{~mL}} \times \frac{0.250 \mathrm{~mol} \mathrm{HCl}}{\mathrm{~L}} \times \frac{\mathrm{mol} \mathrm{CO}}{2 \mathrm{~mol} \mathrm{HCl}}=0.0061125 \mathrm{~mol} \mathrm{CO}
\end{aligned}
$$

(3)

$$
\begin{align*}
& P V=n R T \tag{2}\\
& P=\frac{n R T}{V} \left\lvert\, \begin{array}{ll}
n=0.0061125 \mathrm{~mol} \mathrm{CO}_{2} & T=290.2 \mathrm{~K} \\
R=0.08206 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{~K}} \quad V=50.0 \mathrm{~mL}=0.0500 \mathrm{~L}
\end{array}\right. \\
& P=\frac{\left(0.0061125 \mathrm{~mol}\left(0_{2}\right)\left(0.08206 \frac{\mathrm{La+a} \mathrm{~m}}{\mathrm{mDl} \cdot \mathrm{~K}}\right)(290.2 \mathrm{~K})\right.}{(0.0500 \mathrm{~L})}=2.91 \mathrm{~atm}
\end{align*}
$$

- thermodynamics: the study of energy transfer

Conservation of energy: Energy may change form, but the overall amount of energy remains constant. "first law of thermodynamics"

- ... but what IS energy?
- energy is the ability to do "work"
^ motion of matter

Kinds of energy?

- Kinetic energy: energy of matter in motion $E_{K}=\frac{1}{2} m v^{2}$
- Potential energy: energy of matter that is being acted on by a field of force (like gravity)

- What sort of energy concerns chemists? Energy that is absorbed or released during chemical reactions.
- Energy can be stored in chemicals ... molecules and atoms.

INTERNAL ENERGY: "U"
 related to the kinetic and potential energy of atoms, molecules, and their component parts.

- We measure energy transfer ... which is called HEAT. (HEAT is the flow of energy from an area of higher temperature to an area of lower temperature)

Q:heat
SYSTEM: the object or material under study
SURROUNDINGS: everything else

Type of process	Energy is ...	Sign of Q	Temp of SURROUNDINGS ...
ENDOTHERMIC	transferred from SURROUNDINGS to SYSTEM	+	decreases
EXOTHERMIC	transferred from SYSTEM to SURROUNDINGS	-	increases

152

$$
\text { in } 3 \mathrm{~m}_{2} \mathrm{HCl}, 250 \mathrm{HCl}(\mathrm{aq})+\mathrm{NaOH}(a q) \rightarrow \mathrm{NaOl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

This reaction is EXOTHERMIC. Energy is transferred from the reactants and products (the SYSTEM) to the water in the flask, the flask, etc. (the SURROUNDINGS)

$$
3 \mathrm{M} \mathrm{NaOH}, 25^{\circ} \mathrm{C}
$$

$$
\sum^{3 \mathrm{M} \mathrm{NaCl}}+\mathrm{H}_{2} \mathrm{O}_{1} \sim 40^{\circ} \mathrm{C}
$$

$$
\leadsto \mathrm{Ba}(\mathrm{OH})_{2}-8 \mathrm{H}_{2} \mathrm{O}(\mathrm{~s})+2 \mathrm{NH}_{4} \mathrm{NO}_{3}(\mathrm{~s}) \longrightarrow \mathrm{NH}_{3}(\mathrm{aq})+10 \mathrm{H}_{2} \mathrm{O}(\rho)+\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})
$$

$$
\operatorname{ifl}_{3}, \mathrm{NH}_{4} \mathrm{NO}_{3}, 25^{\circ} \mathrm{C}
$$

This reaction is ENDOTHERMIC. Energy is being transferred from the room/flask/etc. (the SURROUNDINGS) to the reaction itself (the SYSTEM).

入Tum㷠
$\mathrm{BaCH} \mathrm{O}_{2} \cdot 8 \mathrm{H}_{2} \mathrm{O}, 28^{\circ} \mathrm{C}$

$$
\begin{aligned}
& \mathrm{NH}_{3}, \mathrm{H}_{2} \mathrm{O}, \\
& \mathrm{Bu}\left(\mathrm{WO}_{3}\right)_{2}(\mathrm{aq}), \mathrm{CO}^{\circ} \mathrm{C}
\end{aligned}
$$

