
oW molecule N_{2}
$\because N: M:$ The nitrogen atoms share THREE pairs of electrons. This is called a TRIPLE BOND

OR
$: N=\mathbb{N a}^{\prime} \quad$ bond in nitrogen gas apart!

A few notes on the triple bond:

- For atoms to share three pairs of electrons, they have to move closer to one another than they would if they were sharing one or two pairs of electrons. Triple bonds have the shortest BOND DISTANCE of all covalent bonds.

2

- It takes more energy to break a triple bond between two atoms than it would to break either a single or double bond between the same two atoms. The triple bond has the largest BOND ENERGY of all three kinds of covalent bonds.

SO FAR, we've seen that ...
(1) Atoms may share one, two, or three pairs of electrons with each other.
(2) Atoms will usually share enough electrons so that each atom ends up with a share in EIGHT electrons - the "octet rule"

- HYDROGEN will only end up with two electrons!
- Some other atoms may end up with more or less than eight electrons. Exceptions to the octet rule are covered in Chapter 9.

NOW, how could we come up with dot structures for some more complicated (and therefore, more interesting) molecules?

Examples:

$$
\mathrm{H}_{2} \mathrm{CO}_{3} \quad \mathrm{H}-\ddot{O}-{\underset{\sim}{11}}^{\mathrm{C}}-\underset{O}{-O}-\mathrm{H}
$$

$$
\mathrm{CO}_{2}: \because O=C=O \because
$$

(1) Count valence electrons
(2) Pick central atom and draw skeletal structure

- central atom is usually the one that needs to gain the most electrons!
- skeletal structure has all atoms connected to center with single bonds
(3)

Distribute remaining valence electrons around structure, outer atoms first. Follow octet rule until you run out of electrons.

Check octet rule - each atom should have a share in 8 electrons (H gets 2). if not, make double or triple bonds.

Pick OXYGEN, as it needs two electrons

and would normally form two bonds to get them!

Now all atoms have a share in eight valence electrons!
(1) Count valence electrons
(2) Pick central atom and draw skeletal structure

- central atom is usually the one that needs to gain the most electrons!
- skeletal structure has all atoms connected to center with single bonds
(3) Distribute remaining valence electrons around structure, outer atoms first. Follow octet rule until you run out of electrons.
(4) Check octet rule - each atom should have a share in 8 electrons (H gets 2). if not, make double or triple bonds.
$N: 1 \times 5$
$0: 1 \times 6$
$C 1: 1 \times 7$
$\frac{18 e}{}-$
$\mathrm{O}-\mathrm{N}-\mathrm{Cl}$
Pick N as central atom, as it needs to gain more valence electrons (3) than either $\mathrm{O}(2)$ or $\mathrm{Cl}(1)$.
$\therefore \ddot{O}-N-C ;$ Distribute remaining electrons. The last two electrons go on N here because we ran out of space on \bigcirc and $\mathrm{Cl} . .$.
... We've only got 6 electrons on N, so let's make a double bond with oxygen (same reason as last example)
$O_{B E}=N-C \quad \begin{array}{ll}\text { Creating a double bond between } \\ N: O & N \text { and } O \text { gives each atom a share } \\ \text { in eight valence electrons... }\end{array}$ in eight valence electrons...
(1) Count valence electrons
(2) Pick central atom and draw skeletal structure
- central atom is usually the one that needs to gain the most electrons!
- skeletal structure has all atoms connected to center with single bonds
(3) Distribute remaining valence electrons around structure, outer atoms first. Follow octet rule until you run out of electrons.
(4) Check octet rule - each atom should have a share in 8 electrons (H gets 2). if not, make double or triple bonds.
$\mathrm{CO}_{2} \quad \begin{array}{ll}\mathrm{C} & : 1 \times 4 \\ 0: 2 \times 6\end{array}$
$16 e^{-}$
O-C-O Pick C as central atom ...
$\because O-C-O: \quad$... but C only has a share in 4 valence
$O_{a}^{a n}=C-O_{0 \cdot}^{a ;} ; \ldots$ now 6
$\stackrel{O}{O}=C=0 \quad$...now 8 .
$: \bigcirc 三 C-0: \begin{array}{ll}0: & \text { This structure is incorrect because we expect } \\ \text { atoms of the same element (oxygen) to }\end{array}$ behave the same way when in the same environment (each bonded to a single C and to nothing else).

Also, it's beem experimentally determined that there's only one bond distance in carbon dioxide and not two different distances. This supports the $\mathrm{O}=\mathrm{C}=\mathrm{O}$ structure and not the triple/single bond structure.
(1) Count valence electrons
(2) Pick central atom and draw skeletal structure

- central atom is usually the one that needs to gain the most electrons!
- skeletal structure has all atoms connected to center with single bonds
(3) Distribute remaining valence electrons around structure, outer atoms first. Follow octet rule until you run out of electrons.

4 Check octet rule - each atom should have a share in 8 electrons (H gets 2). if not, make double or triple bonds.

HNO_{2} "nitrous acid"

In oxyacids, the acidic hydrogen atoms are attached to OXYGEN atoms in the structure!

$$
\begin{array}{ll}
H:|x| & \\
N: 1 \times 5 & \begin{array}{l}
\text { Since nitrous acid is an OXYACID, } \\
\text { we know that at least one }
\end{array} \\
0: 2 \times 6 & \begin{array}{l}
\text { H atom must be bonded }
\end{array} \\
O-N-O-H
\end{array}
$$

$$
{ }^{\circ} O_{r}-N_{a}-\ddot{O}-H \text { Distribute electrons .. }
$$

... but N only has a share in six valence electrons!

$$
\bigcirc_{r a}^{0}=\prod_{a}^{\infty}-0_{0}^{0}-H
$$

Create a double bond between the O on the left and the N to give each atom a share in 8 electrons (except H, which is "full" with only 2).

A DOT STRUCTURE FOR A LARGER MOLECULE
(1) Count valence electrons
(2) Pick central atom and draw skeletal structure

- central atom is usually the one that needs to gain the most electrons! - skeletal structure has all atoms connected to center with single bonds
(3)

Distribute remaining valence electrons around structure, outer atoms first. Follow octet rule until you run out of electrons.

4 Check octet rule - each atom should have a share in 8 electrons (H gets 2). if not, make double or triple bonds.
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$ ETHANOL!

$$
\left.\begin{aligned}
& C: 4 \times 2=8 \\
& H: 1 \times 6=6 \\
& 0: 6 \times 1=6
\end{aligned} \right\rvert\, 20
$$

This formula gives us a hint to the structure of ethanol. Ethanol has THREE central atoms chained together.

