Not all atoms obey the octet rule all the time. Some atoms have EXPANDED VALENCE, which means they end up with more than eight valence electrons.

Atoms can fit more than eight electrons in their outer shells only if they have "d" subshells in their outer shell. So, to have expanded valence, an atom must be from period 3 or higher. So, sulfur can do expanded valence, but fluorine (period 2) cannot.

$$
\begin{array}{ll}
\text { SHy } & 5: 1 \times 6 \\
& =\frac{4 \times 7=28}{34 \text { electrons }}
\end{array}
$$

Skeletal structure
${ }^{12}$ Examples:

$$
B r C A C 1 \times 4
$$

$$
\begin{aligned}
& \text { Br: } 1 \times 7 \\
& C: 1 \times 4 \\
& N: \frac{1 \times 5}{16 \text { electrons }}
\end{aligned}
$$

$\mathrm{Br}-\mathrm{C}-N$ skeletal
: $\ddot{B} r-C-\ddot{N}: \quad$: Add le actions, stop when we
$: \dot{B}_{0} r-C=N_{0}: \begin{aligned} & \text { Now carbon has a share in six } \\ & \text { electrons }\end{aligned}$
: $\mathrm{B} \mathrm{B} \mathrm{r}-\mathrm{C} \equiv \mathrm{N}:$ Making a triple bond with nitrogen gives all atoms a share in eight valence electrons...
$S F_{6} \quad F: 1 \times 6=6$
$F: 6 \times 7=\frac{42}{48 \text { electrons }}$

The skeletal structure has twelve electrons in sulfur's outer shell, but since sulfur is period 3 , that's OK.

Sulfur hexafluoride is another example of expanded valence. Sulfur ends up with 12 outer electrons.

14

Distribute remaining
electrons (total 24)
Notice that one oxygen
 atom is bonded differently from the others, even though all three are attached to the same carbon and to nothing else. This is a hint that the molecule has RESONANCE structures (delocalized bonds)

${ }^{\circ} \mathrm{CH}_{3} \mathrm{COCH}_{3}$

$$
\begin{aligned}
& c-3 \times 4=12 \\
& H-6 \times 1=6 \\
& 0-1 \times 6=\frac{6}{24} \text { electrons }
\end{aligned}
$$

This is a large molecule. The formula hints that this molecule has three small-molecule pieces...

The skeletal structure has three "central" atoms linked together...

Carbon needs more electrons!

$$
\begin{array}{lll}
\left(\mathrm{CH}_{3}\right)_{2} 0 & C-2 \times 4=8 & \begin{array}{l}
\text { This molecule is called } \\
\\
H-6 \times 1=6
\end{array} \\
& \begin{array}{l}
\text { "dimethyl ether", and is } \\
\text { an isomer of ethanol, } a \\
\text { molecule we used earlier as an }
\end{array} \\
& -1 \times 6=\frac{6}{20} \text { electrons example. }
\end{array}
$$

The formula hints at this skeleton.

The last four electrons must go onto oxygen, as all the other atoms are "full".

ISOMERS are molecules that have the same molecular formula as each other, but have different arrangements of atoms. Depending on how different the arrangement of atoms is, some isomers may have very different properties - like dimethy ether and ethanol.

