Measurements

Measurements are comparisons of properties against accepted standards, called units.

ENGLISH / US SYSTEM OF UNITS:

1 foot =
$$|2 \text{ inches}|$$
 1 yard = 3 feet 1 mile = $|760 \text{ ya}|$ 5280 ft = 1 mi

So what's the problem?

The English system was not designed, so Englissh units don't relate to one another in logical ways. Also, the relationships in English don't make for easy mental math!

English units are nonstandard and difficult to use. Solution? THE METRIC SYSTEM

Metric Base Units:

meter	m
X kilogram	kg
Kelvin	K
second	S
	kilogram Kelvin

All metric units are made up of COMBINATIONS of BASE UNITS!

*we usually treat the gram as if it's the base unit for mass!

- One meter is approximately 3.3 feet.
- One kilogram is approximately 2.2 pounds.

What about SIZE?

A few common metric prefixes:

mega-	10 6	М
kilo-	3 10	k
centi-	-ን	С
milli-	10 3	m
micro-	10 -6	M

Bigger unit;

MEMORIZE the common metric prefixes listed in the study quide

Applying prefixes

$$1 - m = -m$$

$$1 - m = -m$$

$$1 - m = -m$$

$$1 - 03 - m$$

$$1 - 000 - m$$

$$1 - 000 - m$$

The distance between here and Columbia, SC is about 107,000 meters. What metric unit would be best suited for a distance like this?

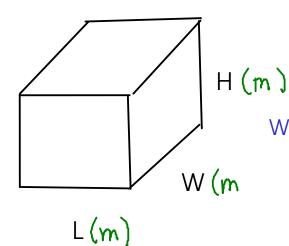
$$k = 10^3 (1000)$$
 $107 \, \text{Km}$

By "best suited", we mean a metric unit that would represent the number without many beginning or end zeros. These kinds of numbers are easier for us to remember!

A piece of chalk is 0.080 meters long. What metric unit would be best

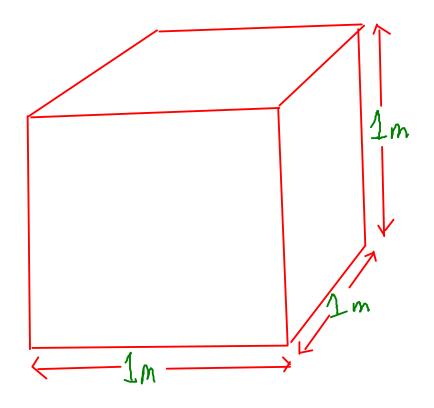
suited for this length?
$$C = 10^{-2} \left(\frac{1}{100} \right)$$

Derived Units


- are units that are made up of combinations of metric base units with each other and/or with prefixes

$$velocity: \frac{miles}{hr} \quad \frac{km}{s} \qquad \left(\frac{m}{s}\right) \qquad \frac{length}{time}$$

Two derived units are particularly important in general chemistry:


- 1) VOLUME
- 2) DENSITY

VOLUME

$$VOLUME = L \times W \times H$$

What are the units of volume in the metric system?

problem: The cubic meter is much too large for lab-scale work. We need a smaller volume unit to work with ...

Practical issues for volume units

- Cubic meters are too large! A meter is very similar in length to a yard, so a cubic meter is a cube that is approximately a yard long on each side!

Cubic <u>decimeters</u> are given the name <u>"liters"</u>, abbreviation "<u>L</u>" In the lab, we typically need an even smaller unit than the liter, so we use <u>milliliters</u> (mL)

7

DENSITY

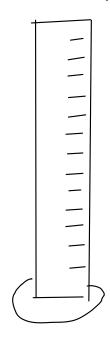
- Density is a measure of the concentration of matter; of how much matter is present in a given space
- Density is defined as the MASS per unit VOLUME, or ...

What are the metric units of DENSITY?

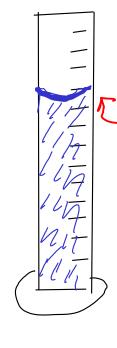
Base unit of mass
$$\frac{1}{3}$$
 Simplest volume unit

So, we have the same problem here that we have with the volume unit itself ...

The kg/cubic meter uses units that aren't practical in lab.


9

In the lab, we typically measure masses as grams and volumes as milliliters, so the density unit we will use most often is:


$$\frac{9}{\text{mL}} \qquad \left(\frac{9}{\text{cm}^3}\right) \left(\frac{9}{\text{cc}}\right)$$

A useful density to remember: WATER at room temp: Density = 1 2/mL

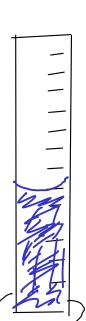
... of a liquid

1) Measure mass of empty cylinder

2) Fill cylinder and measure volume of liquid

3) Measure mass of filled cylinder

4) Subtract to find mass of liquid


5) Density = mass liquid / volume liquid

Density =
$$\frac{33.20}{25.3}$$
 mL
$$= \frac{33.20}{25.3}$$
 mL

11

1) Measure mass of object

2) Partially fill cylinder with liquid, record volume.

4) Subtract to find volume of object

5) Density = mass object / volume object

Density =
$$\frac{9.78}{1.6}$$
 mL = 6.1 $9/mL$