INDICATORS

-Instead of using a pH meter to monitor acidity, we may choose to use an acid-base INDICATOR.

- Acid-base indicators are weak acids or weak bases which are highly colored.
- The color of the undissociated indicator MUST BE DIFFERENT than the color of the dissociated form!

$$\frac{\text{RED}}{\text{MA} + \text{M}_20} \xrightarrow{\text{H}_30} \text{H}_30^+ + \text{A}_7^-$$

The indicator must be present in very low concentrations so that the indicator's equilibrium DOES NOT CONTROL the pH of the solution!

$$HA + H_2 0 \Longrightarrow H_3 0^+ + A^-$$

Look at the Henderson-Hasselbalch equation - we want to know how much of the red form and how much of the blue form are present!

$$pH = pKa, ma + log\left(\frac{CA}{CHA}\right)$$

When does the color of the indicator change?

IF the pH is << pKa, then the log term above must be both large AND negative!

- What color is the solution? $\begin{bmatrix} HA \end{bmatrix} > 2 \begin{bmatrix} A^{-} \end{bmatrix}$... and the solution is RED.

If the pH is >> pKa, then the log term above must be both large AND positive!

- What color is the solution?

 $[A^-] >> [HA]$... and the solution is BLUE

- So, the color changes when the pH of the solution is near the pKa of the indicator, BUT we can only DETECT the change when enough of the other form is present.