An aqueous solution of 0.25 M trimethylamine has a pH of 11.63. What's the experimental value of Kb? $((H_3)_2 N)$

At the moment, we still can't solve for Kb because we don't know what the value of "x" is \dots

If only there were some other way to solve for "x" \dots Let's look at the pH and see if we can solve for "x" with it \dots

$$(CH_3)_3N + H_2D \rightleftharpoons ((H_3)_3NH^{\dagger} + OH^{-1})_3N + H_2D \rightleftharpoons ((H_3)_3NH^{\dagger} + OH^{-1})_3N + H_2D \rightleftharpoons ((H_3)_3NH^{\dagger} + OH^{-1})_3N + H_2D \oiint ((H_3)_3N + H_2D)_3N + H_2D$$

We know the solution has a pH of 11.63. Using that, we can determine pOH ...

151

11.63 + pOH = 14.00 · pOH = 2.3) Now, find the concentration of hydroide ion. Based on how we defined "x" in the chart, hydroxide concentration also equals "x"... $[OH^{-}] = 10^{-2.37} = 0.0042657952 = X$

Plug into the equilibrium expression to find Kb ...

$$\frac{(x)(x)}{0.25-x} = K_{b} = \frac{(0.0042657952)}{0.25-0.0042657952}$$

$$K_{b} = 7.4 \times 10^{-5}$$

152

Find
$$PH \circ F \circ 0.10 \text{ M} \text{ H}_3 PO_4$$

... what's special about phosphoric acid?
(1) $H_3 PO_4 + H_2 \circ \rightleftharpoons H_2 PO_4^- + H_3 \circ^+$
(2) $H_2 PO_4^- + H_2 \circ \rightleftharpoons H PO_4^{2-} + H_3 \circ^+$
(3) $H PO_4^{2-} + H_2 \circ \rightleftharpoons PO_4^{3-} + H_3 \circ^+$
(3) $H PO_4^{2-} + H_2 \circ \rightleftharpoons PO_4^{3-} + H_3 \circ^+$
(4) $H PO_4^{2-} + H_2 \circ \rightleftharpoons PO_4^{3-} + H_3 \circ^+$
(5) $H PO_4^{2-} + H_2 \circ \rightleftharpoons PO_4^{3-} + H_3 \circ^+$
(6) $H PO_4^{2-} + H_2 \circ \rightleftharpoons PO_4^{3-} + H_3 \circ^+$
(7) $H PO_4^{2-} + H_2 \circ \rightleftharpoons PO_4^{3-} + H_3 \circ^+$
(8) $H PO_4^{2-} + H_2 \circ \rightleftharpoons PO_4^{3-} + H_3 \circ^+$
(9) $H PO_4^{2-} + H_2 \circ \rightleftharpoons PO_4^{3-} + H_3 \circ^+$
(9) $H PO_4^{2-} + H_2 \circ \doteqdot PO_4^{3-} + H_3 \circ^+$
(9) $H PO_4^{2-} + H_2 \circ \doteqdot PO_4^{3-} + H_3 \circ^+$
(9) $H PO_4^{2-} + H_2 \circ \doteqdot PO_4^{3-} + H_3 \circ^+$
(9) $H PO_4^{2-} + H_2 \circ \doteqdot PO_4^{3-} + H_3 \circ^+$
(9) $H PO_4^{2-} + H_2 \circ \doteqdot PO_4^{3-} + H_3 \circ^+$
(9) $H PO_4^{2-} + H_2 \circ \doteqdot PO_4^{3-} + H_3 \circ^+$
(9) $H PO_4^{2-} + H_2 \circ \doteqdot PO_4^{3-} + H_3 \circ^+$
(9) $H PO_4^{2-} + H_2 \circ \doteqdot PO_4^{3-} + H_3 \circ^+$
(9) $H PO_4^{2-} + H_2 \circ \doteqdot PO_4^{3-} + H_3 \circ^+$
(9) $H PO_4^{2-} + H_2 \circ \doteqdot PO_4^{3-} + H_3 \circ^+$
(9) $H PO_4^{2-} + H_2 \circ \doteqdot PO_4^{3-} + H_3 \circ^+$
(9) $H PO_4^{2-} + H_2 \circ \doteqdot PO_4^{3-} + H_3 \circ^+$
(9) $H PO_4^{3-} + H_2 \circ \doteqdot PO_4^{3-} + H_3 \circ^+$
(9) $H PO_4^{3-} + H_2 \circ \doteqdot PO_4^{3-} + H_3 \circ^+$
(9) $H PO_4^{3-} + H_2 \circ \circlearrowright PO_4^{3-} + H_3 \circ^+$
(9) $H PO_4^{3-} + H_2 \circ \circlearrowright PO_4^{3-} + H_3 \circ^+$
(9) $H PO_4^{3-} + H_2 \circ \circlearrowright PO_4^{3-} + H_3 \circ^+$
(9) $H PO_4^{3-} + H_2 \circ \circlearrowright PO_4^{3-} + H_3 \circ^+$
(9) $H PO_4^{3-} + H_2 \circ \circlearrowright PO_4^{3-} + H_3 \circ^+$
(9) $H PO_4^{3-} + H_2 \circ \circlearrowright PO_4^{3-} + H_3 \circ^+$
(9) $H PO_4^{3-} + H_2 \circ \circlearrowright PO_4^{3-} + H_3 \circ^+$
(9) $H PO_4^{3-} + H_2 \circ \circlearrowright PO_4^{3-} + H_3 \circ^+$
(9) $H PO_4^{3-} + H_2 \circ \circlearrowright PO_4^{3-} + H_3 \circ^+$
(9) $H PO_4^{3-} + H_2 \circ \circlearrowright PO_4^{3-} + H_3 \circ^+$
(9) $H PO_4^{3-} + H_2 \circ \circlearrowright PO_4^{3-} + H_3 \circ^+$
(9) $H PO_4^{3-} + H_2 \circ \circlearrowright PO_4^{3-} + H_3 \circ^+$
(9) $H PO_4^{3-} + H_3 \circ$

 $K_{\alpha 3} = H, \Re 10^{-13}$ Remember: This is a weak acid. It exists in water mostly as undissociated phosphoric acid molecules.

Solve the equilibrium of phosphoric acid's FIRST proton: $H_3PO_4 + H_2O \rightleftharpoons H_2PO_4^- + H_3O^+$; $K_0 = 6.9 \times 10^{-3}$ $K_{L} = \frac{[H_2PO_4^-][H_3O^+]}{[H_3PO_4]} = 6.9 \times 10^{-3}$ Species [[Initial]] D (Equilibrium) the Poy- $+\chi$ \bigcirc Hzot $+\chi$ X \bigcirc 0,10 - 7 0.10 $-\chi$ HzPOY

$$\frac{\chi^{2}}{0.10 - \chi} = 6.9 \times 10^{-3}$$

$$\int_{0.10 - \chi}^{0.05 \text{ some } \chi < c < 0.10} \int_{0.10}^{0.10 - \chi} 0.10$$

$$\frac{\chi^{2}}{0.10} = 6.9 \times 10^{-3}$$

$$\chi = 0.0262678511 = CH_{30}$$