150
An aqueous solution of 0.25 M trimethylamine has a pH of 11.63 . What's the experimental value of Kb ?

$$
\left(\mathrm{CH}_{3}\right)_{3} N
$$

$$
\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons\left(\mathrm{CH}_{3}\right)_{3} \mathrm{NH}^{+}+\mathrm{OH}^{-}
$$

$$
K_{b}=\frac{\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{NH}^{+}\right]\left[\mathrm{OH}^{-}\right]}{\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}\right]}=?
$$

We don't look up a value for Kb , since that's actually what we want to solve for ...
Let's set up a concentration table just like we have done for the previous acid-base problems...

Species	[Initial]	Δ	[Equilibrium]
$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{NH}^{+}$	0	$+X$	X
$O H^{-}$	0	$+X$	X
$\left(\left[\mathrm{H}_{3}\right)_{3} \mathrm{~N}\right.$	0.2 S	$-X$	$0.25-X$
$K_{b}=\frac{\left[\left(\mathrm{CH}_{3}{ }^{+}\right)_{3} \mathrm{NH}^{+}\right][\mathrm{OH}]}{\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}\right]}=\frac{(X)(X)}{0.2 S-X}=\mathrm{Kb}$			

At the moment, we still can't solve for Kb because we don't know what the value of " x " is ...

If only there were some other way to solve for "x" ... Let's look at the pH and see if we can solve for "x" with it ...

$$
{ }^{151}\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons\left(\mathrm{CH}_{3}\right)_{3} \mathrm{NH}^{+}+\mathrm{OH}^{-}
$$

We know the solution has a pH of 11.63. Using that, we can determine pOH ...

$$
\begin{aligned}
& P H+P O H=14.00, \text { SD } \\
& 11.63+P O H=14.00, \quad \text { OOH }=2.37
\end{aligned}
$$

Now, find the concentration of hydrbide ion. Based on how we defined "x" in the chart, hydroxide concentration also equals "x"...

$$
\left[0 H^{-}\right]=10^{-p 04}=10^{-2.37}=0.0042657952=x
$$

Plug into the equilibrium expression to find Kb ...

$$
\begin{gathered}
\frac{(x)(x)}{0.25-x}=K_{b}=\frac{(0.0042657952)^{2}}{0.25-0.0042657952} \\
K_{b}=7.4 \times 10^{-5}
\end{gathered}
$$

POLYPROTIC ACIDS

Find pH of $\mathrm{O}, 10 \mathrm{M} \mathrm{H}_{3} \mathrm{PO}_{4}$
... what's special about phosphoric acid?
(1)

$$
\mathrm{H}_{3} \mathrm{PO}_{4}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{2} \mathrm{PO}_{4}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}
$$

Phosphoric acid has THREE acidic protons!
(2)

$$
\mathrm{H}_{2} \mathrm{PO}_{4}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{HPO}_{4}^{2-}+\mathrm{H}_{3} \mathrm{O}^{+}
$$

(3)

$$
\left.\mathrm{HPO}_{4}^{2-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{PO}_{4}^{3-}+\mathrm{H}_{3} \mathrm{O}^{+}\right]
$$

$$
\begin{aligned}
& K_{a_{1}}=6.9 \times 10^{-3} \\
& K_{a_{2}}=6.2 \times 10^{-8} \\
& K_{a_{3}}=4.8 \times 10^{-13}
\end{aligned}
$$

The first dissocation is dominant here, and for simple calculations of phosphoric acid in water, we will simply use the first ionization and ignore the other two.

Remember: This is a weak acid. It exists in water mostly as undissociated phosphoric acid molecules.

Solve the equilibrium of phosphoric acid's FIRST proton:

$$
\begin{aligned}
& \text { Solve the equilibrium of phosphoric acid's ills proton: } \\
& \mathrm{H}_{3} \mathrm{PO}_{4}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{2} \mathrm{PO}_{4}^{-}+\mathrm{H}_{3} \mathrm{O}^{+} ; \mathrm{K}_{4}=6.9 \times 10^{-3} \\
& K_{4}=\frac{\left[\mathrm{H}_{2} \mathrm{PO}_{4}^{-}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}{\left[\mathrm{H}_{3} \mathrm{PO}_{4}\right]}=6.9 \times 10^{-3}
\end{aligned}
$$

Species	[Initial $]$	Δ	$[$ Equilibrium $]$
$\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}$	O	$+x$	x
$\mathrm{H}_{3} \mathrm{O}^{+}$	0	$+x$	x
$\mathrm{H}_{3} \mathrm{PO}_{4}$	0.10	$-x$	$0,10-x$
x^{2}	-3		

$$
\left.\begin{array}{rl}
\frac{x^{2}}{0.10-x} & =6.9 \times 10^{-3} \\
& \left.\quad \begin{array}{l}
\text { assume } \quad x<0.10 \\
\text { so } 0.10-x
\end{array}\right) 0.10
\end{array}\right] \begin{aligned}
\frac{x^{2}}{0.10} & =6.9 \times 10^{-3} \\
x & =0.0262678511=\left[H_{3} 0+\right]
\end{aligned}
$$

$$
\text { So, } p H=-\log (0.0262678511)
$$

$$
p H=1.58
$$

